Image Analysis and Enhancement: General Methods and Biomedical Applications

IF 0.7 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. S. Krylov, A. V. Nasonov, D. V. Sorokin, A. V. Khvostikov, E. A. Pavelyeva, Ya. A. Pchelintsev
{"title":"Image Analysis and Enhancement: General Methods and Biomedical Applications","authors":"A. S. Krylov, A. V. Nasonov, D. V. Sorokin, A. V. Khvostikov, E. A. Pavelyeva, Ya. A. Pchelintsev","doi":"10.1134/s1054661823040235","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>General methods of image processing, analysis and enhancement and their biomedical applications developed by the scientific school of the Laboratory of Mathematical Methods of Image Processing of the Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University are reviewed. The suggested general methods and algorithms of image quality enhancement for image resampling and super-resolution, ringing artifact reduction, image sharpening, image denoising, and image registration are described. Image analysis methods based on Hermite projection method, Gauss-Laguerre functions and the use of phase information are presented. We describe and review the developed methods for medical imaging tasks solution, including problems in histology, color Doppler flow mapping, ultrasound liver fibrosis diagnostics, CT brain perfusion, Alzheimer’s disease diagnostics, dermatology, chest X-ray image analysis, live cell image registration, tracking, segmentation and synthesis. The paper illustrates the basic research idea of the effectiveness of the hybrid approach when we jointly use classical mathematical methods and deep learning approaches.</p>","PeriodicalId":35400,"journal":{"name":"PATTERN RECOGNITION AND IMAGE ANALYSIS","volume":"16 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PATTERN RECOGNITION AND IMAGE ANALYSIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1054661823040235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

General methods of image processing, analysis and enhancement and their biomedical applications developed by the scientific school of the Laboratory of Mathematical Methods of Image Processing of the Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University are reviewed. The suggested general methods and algorithms of image quality enhancement for image resampling and super-resolution, ringing artifact reduction, image sharpening, image denoising, and image registration are described. Image analysis methods based on Hermite projection method, Gauss-Laguerre functions and the use of phase information are presented. We describe and review the developed methods for medical imaging tasks solution, including problems in histology, color Doppler flow mapping, ultrasound liver fibrosis diagnostics, CT brain perfusion, Alzheimer’s disease diagnostics, dermatology, chest X-ray image analysis, live cell image registration, tracking, segmentation and synthesis. The paper illustrates the basic research idea of the effectiveness of the hybrid approach when we jointly use classical mathematical methods and deep learning approaches.

Abstract Image

图像分析与增强:一般方法和生物医学应用
摘要 综述了莫斯科国立罗蒙诺索夫大学计算数学与控制论学院图像处理数学方法实验室科学流派开发的图像处理、分析和增强的一般方法及其生物医学应用。文中介绍了针对图像重采样和超分辨率、减少振铃伪影、图像锐化、图像去噪和图像配准的图像质量提升建议的一般方法和算法。介绍了基于 Hermite 投影法、高斯-拉盖尔函数和使用相位信息的图像分析方法。我们描述并回顾了已开发的医学成像任务解决方案,包括组织学、彩色多普勒血流图、超声肝纤维化诊断、CT 脑灌注、老年痴呆症诊断、皮肤病学、胸部 X 射线图像分析、活细胞图像配准、跟踪、分割和合成等方面的问题。本文阐述了我们联合使用经典数学方法和深度学习方法时混合方法有效性的基本研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PATTERN RECOGNITION AND IMAGE ANALYSIS
PATTERN RECOGNITION AND IMAGE ANALYSIS Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.80
自引率
20.00%
发文量
80
期刊介绍: The purpose of the journal is to publish high-quality peer-reviewed scientific and technical materials that present the results of fundamental and applied scientific research in the field of image processing, recognition, analysis and understanding, pattern recognition, artificial intelligence, and related fields of theoretical and applied computer science and applied mathematics. The policy of the journal provides for the rapid publication of original scientific articles, analytical reviews, articles of the world''s leading scientists and specialists on the subject of the journal solicited by the editorial board, special thematic issues, proceedings of the world''s leading scientific conferences and seminars, as well as short reports containing new results of fundamental and applied research in the field of mathematical theory and methodology of image analysis, mathematical theory and methodology of image recognition, and mathematical foundations and methodology of artificial intelligence. The journal also publishes articles on the use of the apparatus and methods of the mathematical theory of image analysis and the mathematical theory of image recognition for the development of new information technologies and their supporting software and algorithmic complexes and systems for solving complex and particularly important applied problems. The main scientific areas are the mathematical theory of image analysis and the mathematical theory of pattern recognition. The journal also embraces the problems of analyzing and evaluating poorly formalized, poorly structured, incomplete, contradictory and noisy information, including artificial intelligence, bioinformatics, medical informatics, data mining, big data analysis, machine vision, data representation and modeling, data and knowledge extraction from images, machine learning, forecasting, machine graphics, databases, knowledge bases, medical and technical diagnostics, neural networks, specialized software, specialized computational architectures for information analysis and evaluation, linguistic, psychological, psychophysical, and physiological aspects of image analysis and pattern recognition, applied problems, and related problems. Articles can be submitted either in English or Russian. The English language is preferable. Pattern Recognition and Image Analysis is a hybrid journal that publishes mostly subscription articles that are free of charge for the authors, but also accepts Open Access articles with article processing charges. The journal is one of the top 10 global periodicals on image analysis and pattern recognition and is the only publication on this topic in the Russian Federation, Central and Eastern Europe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信