Exploring Massive Neutron Stars Towards the Mass Gap: Constraining the High Density Nuclear Equation of State

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Zenia Zuraiq, Banibrata Mukhopadhyay, Fridolin Weber
{"title":"Exploring Massive Neutron Stars Towards the Mass Gap: Constraining the High Density Nuclear Equation of State","authors":"Zenia Zuraiq,&nbsp;Banibrata Mukhopadhyay,&nbsp;Fridolin Weber","doi":"10.1134/S1063772923140214","DOIUrl":null,"url":null,"abstract":"<p>Due to the high-density nuclear matter equation of state (EOS) being as yet unknown, neutron stars (NSs) do not have a confirmed limiting “Chandrasekhar” type maximum mass. However, observations of NSs (PSR J1614-2230, PSR J0348+0432, PSR J0740+6620, PSR J0952–0607) indicate that the NS’s limiting mass, if there is any, could be well over <span>\\(2{{M}_{ \\odot }}\\)</span>. On the other hand, there seems to be an observational mass gap (of around <span>\\(2.5{-} 5{{M}_{ \\odot }}\\)</span>) between the lightest black hole and the heaviest NS. Therefore, the “massive NSs” are prime candidates to fill that gap. Several NS EOSs have been proposed using both microscopic and phenomenological approaches. In this project, we look at a class of phenomenological nuclear matter EOSs—relativistic mean field models—and see what kind of NS is formed from them. We compute the maximum mass supported by each model EOS to observe if the mass of the NS is indeed in the “massive” NS (<span>\\( &gt; {\\kern 1pt} 2{{M}_{ \\odot }}\\)</span>) regime. We also observe the effects of including exotic particles (hyperons, Δ<i>s</i>) in the NS EOS and how that affects the NS mass. However, only by introducing the magnetic field, i.e. for magnetized anisotropic NSs, we find the mass exceeding <span>\\(2.5{{M}_{ \\odot }}\\)</span>. Using tidal deformability constraints from gravitational wave observations, we place a further check on how physical the EOS and NSs are.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772923140214","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the high-density nuclear matter equation of state (EOS) being as yet unknown, neutron stars (NSs) do not have a confirmed limiting “Chandrasekhar” type maximum mass. However, observations of NSs (PSR J1614-2230, PSR J0348+0432, PSR J0740+6620, PSR J0952–0607) indicate that the NS’s limiting mass, if there is any, could be well over \(2{{M}_{ \odot }}\). On the other hand, there seems to be an observational mass gap (of around \(2.5{-} 5{{M}_{ \odot }}\)) between the lightest black hole and the heaviest NS. Therefore, the “massive NSs” are prime candidates to fill that gap. Several NS EOSs have been proposed using both microscopic and phenomenological approaches. In this project, we look at a class of phenomenological nuclear matter EOSs—relativistic mean field models—and see what kind of NS is formed from them. We compute the maximum mass supported by each model EOS to observe if the mass of the NS is indeed in the “massive” NS (\( > {\kern 1pt} 2{{M}_{ \odot }}\)) regime. We also observe the effects of including exotic particles (hyperons, Δs) in the NS EOS and how that affects the NS mass. However, only by introducing the magnetic field, i.e. for magnetized anisotropic NSs, we find the mass exceeding \(2.5{{M}_{ \odot }}\). Using tidal deformability constraints from gravitational wave observations, we place a further check on how physical the EOS and NSs are.

Abstract Image

Abstract Image

探索大质量中子星的质量差距:约束高密度核状态方程
摘要由于高密度核物质的状态方程(EOS)尚不清楚,中子星(NSs)还没有一个确定的 "钱德拉塞卡 "型极限最大质量。然而,对NSs(PSR J1614-2230,PSR J0348+0432,PSR J0740+6620,PSR J0952-0607)的观测表明,NS的极限质量(如果有的话)可能远远超过\(2{{M}_{ \odot }}\)。另一方面,在最轻的黑洞和最重的NS之间似乎存在着观测质量差距(大约为\(2.5{-} 5{{M}_{ \odot }}\)。因此,"大质量 NS "是填补这一差距的主要候选者。人们已经利用微观和现象学方法提出了几种NS EOS。在本项目中,我们研究了一类现象学核物质 EOS--相对论均场模型--看看它们会形成什么样的 NS。我们计算了每个模型EOS支持的最大质量,以观察NS的质量是否确实处于 "大质量 "NS(\( > {\kern 1pt} 2{{M}_{ \odot }}\)机制。我们还观察到了在 NS EOS 中加入外来粒子(超子、Δs)的效果,以及这对 NS 质量的影响。然而,只有引入磁场,即对于磁化的各向异性NS,我们才会发现质量超过\(2.5{{M}_{ \odot }}\)。利用来自引力波观测的潮汐变形约束,我们进一步检验了EOS和NS的物理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy Reports
Astronomy Reports 地学天文-天文与天体物理
CiteScore
1.40
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信