Equalities for mixed operations of Moore–Penrose and group inverses of a matrix

Pub Date : 2024-05-03 DOI:10.1007/s00010-024-01072-2
Yongge Tian
{"title":"Equalities for mixed operations of Moore–Penrose and group inverses of a matrix","authors":"Yongge Tian","doi":"10.1007/s00010-024-01072-2","DOIUrl":null,"url":null,"abstract":"<p>This article shows how to establish expansion formulas for calculating the nested operations <span>\\((A^{\\dag })^{\\#}\\)</span>, <span>\\((A^{\\#})^{\\dag }\\)</span>, <span>\\(((A^{\\dag })^{\\#})^{\\dag }\\)</span>, <span>\\(((A^{\\#})^{\\dag })^{\\#}\\)</span>, <span>\\(\\ldots \\)</span> of generalized inverses, where <span>\\((\\cdot )^{\\dag }\\)</span> denotes the Moore–Penrose inverse of a matrix and <span>\\((\\cdot )^{\\#}\\)</span> denotes the group inverse of a square matrix. As applications of the formulas obtained, the author constructs and classifies some groups of matrix equalities involving the above nested operations, and derives necessary and sufficient conditions for them to hold.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01072-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article shows how to establish expansion formulas for calculating the nested operations \((A^{\dag })^{\#}\), \((A^{\#})^{\dag }\), \(((A^{\dag })^{\#})^{\dag }\), \(((A^{\#})^{\dag })^{\#}\), \(\ldots \) of generalized inverses, where \((\cdot )^{\dag }\) denotes the Moore–Penrose inverse of a matrix and \((\cdot )^{\#}\) denotes the group inverse of a square matrix. As applications of the formulas obtained, the author constructs and classifies some groups of matrix equalities involving the above nested operations, and derives necessary and sufficient conditions for them to hold.

分享
查看原文
摩尔-彭罗斯混合运算和矩阵的群逆运算的等式
本文展示了如何建立计算嵌套运算 \((A^{\dag })^{\#}\), \((A^{\#})^{\dag }\), \(((A^{\dag })^{\#})^{\dag }\), \(((A^{\#})^{\dag })^{\#}\) 的展开公式、\的广义逆,其中 \((\cdot )^{\dag }\) 表示矩阵的摩尔-彭罗斯逆, \((\cdot )^{\#}\) 表示正方形矩阵的群逆。作为所获公式的应用,作者构造并分类了涉及上述嵌套运算的一些矩阵等式组,并推导出它们成立的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信