S. V. Sintsov, A. V. Vodopyanov, D. A. Mansfeld, A. P. Fokin, A. A. Ananichev, A. A. Goryunov, E. I. Preobrazhensky, N. V. Chekmarev, M. Yu. Glyavin
{"title":"Hybrid Subterahertz Atmospheric Pressure Plasmatron for Plasma Chemical Applications","authors":"S. V. Sintsov, A. V. Vodopyanov, D. A. Mansfeld, A. P. Fokin, A. A. Ananichev, A. A. Goryunov, E. I. Preobrazhensky, N. V. Chekmarev, M. Yu. Glyavin","doi":"10.1007/s10762-024-00987-w","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the results of an experimental study of a new hybrid plasmatron scheme, which was used to realize a gas discharge at atmospheric pressure supported by continuous focused submillimeter radiation with a frequency of 263 GHz. The implemented design allowed organizing a self-consistent interaction between submillimeter radiation and the supercritical plasma in a localized area both in terms of gas flow and electrodynamic. It is experimentally shown that the gas discharge absorbs up to 80% of the introduced submillimeter radiation power.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00987-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the results of an experimental study of a new hybrid plasmatron scheme, which was used to realize a gas discharge at atmospheric pressure supported by continuous focused submillimeter radiation with a frequency of 263 GHz. The implemented design allowed organizing a self-consistent interaction between submillimeter radiation and the supercritical plasma in a localized area both in terms of gas flow and electrodynamic. It is experimentally shown that the gas discharge absorbs up to 80% of the introduced submillimeter radiation power.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.