A. Pichugin, M. Pechin, A. Beznosikov, A. Savchenko, A. Gasnikov
{"title":"Optimal Analysis of Method with Batching for Monotone Stochastic Finite-Sum Variational Inequalities","authors":"A. Pichugin, M. Pechin, A. Beznosikov, A. Savchenko, A. Gasnikov","doi":"10.1134/S1064562423701582","DOIUrl":null,"url":null,"abstract":"<p>Variational inequalities are a universal optimization paradigm that is interesting in itself, but also incorporates classical minimization and saddle point problems. Modern realities encourage to consider stochastic formulations of optimization problems. In this paper, we present an analysis of a method that gives optimal convergence estimates for monotone stochastic finite-sum variational inequalities. In contrast to the previous works, our method supports batching and does not lose the oracle complexity optimality. The effectiveness of the algorithm, especially in the case of small but not single batches is confirmed experimentally.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 2 supplement","pages":"S348 - S359"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701582","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Variational inequalities are a universal optimization paradigm that is interesting in itself, but also incorporates classical minimization and saddle point problems. Modern realities encourage to consider stochastic formulations of optimization problems. In this paper, we present an analysis of a method that gives optimal convergence estimates for monotone stochastic finite-sum variational inequalities. In contrast to the previous works, our method supports batching and does not lose the oracle complexity optimality. The effectiveness of the algorithm, especially in the case of small but not single batches is confirmed experimentally.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.