{"title":"Engineering of plasmonic electromagnetically induced transparency from double quantum dot-metal nanoparticle structure","authors":"Asaad H. Hameed, Amin H. Al-Khursan","doi":"10.1117/1.jnp.18.026003","DOIUrl":null,"url":null,"abstract":"Due to the limited study, this work engineers the parameters controlling the rate of absorbed energy from a double quantum dot (DQD)-metal nanoparticle (MNP) system at plasmonic electromagnetically induced transparency (PEIT) considering the strong coupling between DQD and MNP. The modeling is of the material property for which the energy states and transition momenta are calculated. The analysis considers the orthogonalized plane wave between the wetting layer (WL)-QD transitions. A huge (10−5 W) total absorption rate (Qtotal) from the system is attained. This result is higher by four orders and the power applied is less by three orders than that obtained in the literature. Many features are studied. Neglecting the WL, the system spectrum is similar to the left-handed picture of the system with WL. The value of Q depends on the situation of the QD energy states through the variation of the QD size, MNP radius, and distance separating the system. In the DQD-MNP hybrid system, the controlling factor that gives a high Qtotal in the PEIT case is the DQD combination with a weak probe and enough pump, i.e., the DQD structure works as a whole structure, not as two QDs working separately. Such a structure allows for manipulating the flexibility of carriers between DQD states that are not found in other structures. From the results, one can conclude that DQD behavior under the pump, probe, and single tunneling component produces two transparent windows. Adding a second tunneling component creates four transparency windows depending on the values of these applied parameters.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"28 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.026003","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the limited study, this work engineers the parameters controlling the rate of absorbed energy from a double quantum dot (DQD)-metal nanoparticle (MNP) system at plasmonic electromagnetically induced transparency (PEIT) considering the strong coupling between DQD and MNP. The modeling is of the material property for which the energy states and transition momenta are calculated. The analysis considers the orthogonalized plane wave between the wetting layer (WL)-QD transitions. A huge (10−5 W) total absorption rate (Qtotal) from the system is attained. This result is higher by four orders and the power applied is less by three orders than that obtained in the literature. Many features are studied. Neglecting the WL, the system spectrum is similar to the left-handed picture of the system with WL. The value of Q depends on the situation of the QD energy states through the variation of the QD size, MNP radius, and distance separating the system. In the DQD-MNP hybrid system, the controlling factor that gives a high Qtotal in the PEIT case is the DQD combination with a weak probe and enough pump, i.e., the DQD structure works as a whole structure, not as two QDs working separately. Such a structure allows for manipulating the flexibility of carriers between DQD states that are not found in other structures. From the results, one can conclude that DQD behavior under the pump, probe, and single tunneling component produces two transparent windows. Adding a second tunneling component creates four transparency windows depending on the values of these applied parameters.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.