{"title":"The Price of Unlearning: Identifying Unlearning Risk in Edge Computing","authors":"Lefeng Zhang, Tianqing Zhu, Ping Xiong, Wanlei Zhou","doi":"10.1145/3662184","DOIUrl":null,"url":null,"abstract":"<p>Machine unlearning is an emerging paradigm that aims to make machine learning models “forget” what they have learned about particular data. It fulfills the requirements of privacy legislation (e.g., GDPR), which stipulates that individuals have the autonomy to determine the usage of their personal data. However, alongside all the achievements, there are still loopholes in machine unlearning that may cause significant losses for the system, especially in edge computing. Edge computing is a distributed computing paradigm with the purpose of migrating data processing tasks closer to terminal devices. While various machine unlearning approaches have been proposed to erase the influence of data sample(s), we claim that it might be dangerous to directly apply them in the realm of edge computing. A malicious edge node may broadcast (possibly fake) unlearning requests to a target data sample (s) and then analyze the behavior of edge devices to infer useful information. In this paper, we exploited the vulnerabilities of current machine unlearning strategies in edge computing and proposed a new inference attack to highlight the potential privacy risk. Furthermore, we developed a defense method against this particular type of attack and proposed <i>the price of unlearning</i> (<i>PoU</i>) as a means to evaluate the inefficiency it brings to an edge computing system. We provide theoretical analyses to show the upper bound of the <i>PoU</i> using tools borrowed from game theory. The experimental results on real-world datasets demonstrate that the proposed defense strategy is effective and capable of preventing an adversary from deducing useful information.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"21 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3662184","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine unlearning is an emerging paradigm that aims to make machine learning models “forget” what they have learned about particular data. It fulfills the requirements of privacy legislation (e.g., GDPR), which stipulates that individuals have the autonomy to determine the usage of their personal data. However, alongside all the achievements, there are still loopholes in machine unlearning that may cause significant losses for the system, especially in edge computing. Edge computing is a distributed computing paradigm with the purpose of migrating data processing tasks closer to terminal devices. While various machine unlearning approaches have been proposed to erase the influence of data sample(s), we claim that it might be dangerous to directly apply them in the realm of edge computing. A malicious edge node may broadcast (possibly fake) unlearning requests to a target data sample (s) and then analyze the behavior of edge devices to infer useful information. In this paper, we exploited the vulnerabilities of current machine unlearning strategies in edge computing and proposed a new inference attack to highlight the potential privacy risk. Furthermore, we developed a defense method against this particular type of attack and proposed the price of unlearning (PoU) as a means to evaluate the inefficiency it brings to an edge computing system. We provide theoretical analyses to show the upper bound of the PoU using tools borrowed from game theory. The experimental results on real-world datasets demonstrate that the proposed defense strategy is effective and capable of preventing an adversary from deducing useful information.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.