A Novel Hybrid Deep Learning Model for Complex Systems: A Case of Train Delay Prediction

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dawei Wang, Jingwei Guo, Chunyang Zhang
{"title":"A Novel Hybrid Deep Learning Model for Complex Systems: A Case of Train Delay Prediction","authors":"Dawei Wang, Jingwei Guo, Chunyang Zhang","doi":"10.1155/2024/8163062","DOIUrl":null,"url":null,"abstract":"Predicting the status of train delays, a complex and dynamic problem, is crucial for railway enterprises and passengers. This paper proposes a novel hybrid deep learning model composed of convolutional neural networks (CNN) and temporal convolutional networks (TCN), named the CNN + TCN model, for predicting train delays in railway systems. First, we construct 3D data containing the spatiotemporal characteristics of real-world train data. Then, the CNN + TCN model employs a 3D CNN component, which is fed into the constructed 3D data to mine the spatiotemporal characteristics, and a TCN component that captures the temporal characteristics in railway operation data. Furthermore, the characteristic variables corresponding to the two components are selected. Finally, the model is evaluated by leveraging data from two railway lines in the United Kingdom. Numerical results show that the CNN + TCN model has greater accuracy and convergence performance in train delay prediction.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8163062","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the status of train delays, a complex and dynamic problem, is crucial for railway enterprises and passengers. This paper proposes a novel hybrid deep learning model composed of convolutional neural networks (CNN) and temporal convolutional networks (TCN), named the CNN + TCN model, for predicting train delays in railway systems. First, we construct 3D data containing the spatiotemporal characteristics of real-world train data. Then, the CNN + TCN model employs a 3D CNN component, which is fed into the constructed 3D data to mine the spatiotemporal characteristics, and a TCN component that captures the temporal characteristics in railway operation data. Furthermore, the characteristic variables corresponding to the two components are selected. Finally, the model is evaluated by leveraging data from two railway lines in the United Kingdom. Numerical results show that the CNN + TCN model has greater accuracy and convergence performance in train delay prediction.
复杂系统的新型混合深度学习模型:列车延误预测案例
预测列车延误情况是一个复杂的动态问题,对铁路企业和乘客至关重要。本文提出了一种由卷积神经网络(CNN)和时序卷积网络(TCN)组成的新型混合深度学习模型,命名为 CNN + TCN 模型,用于预测铁路系统中的列车延误情况。首先,我们构建了包含真实世界列车数据时空特征的三维数据。然后,CNN + TCN 模型采用三维 CNN 组件和 TCN 组件,前者输入构建的三维数据以挖掘时空特征,后者捕捉铁路运行数据中的时间特征。此外,还选择了与这两个组件相对应的特征变量。最后,利用英国两条铁路线的数据对模型进行了评估。数值结果表明,CNN + TCN 模型在列车延误预测方面具有更高的准确性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信