From Proof Complexity to Circuit Complexity via Interactive Protocols

Noel Arteche, Erfan Khaniki, Ján Pich, Rahul Santhanam
{"title":"From Proof Complexity to Circuit Complexity via Interactive Protocols","authors":"Noel Arteche, Erfan Khaniki, Ján Pich, Rahul Santhanam","doi":"arxiv-2405.02232","DOIUrl":null,"url":null,"abstract":"Folklore in complexity theory suspects that circuit lower bounds against\n$\\mathbf{NC}^1$ or $\\mathbf{P}/\\operatorname{poly}$, currently out of reach,\nare a necessary step towards proving strong proof complexity lower bounds for\nsystems like Frege or Extended Frege. Establishing such a connection formally,\nhowever, is already daunting, as it would imply the breakthrough separation\n$\\mathbf{NEXP} \\not\\subseteq \\mathbf{P}/\\operatorname{poly}$, as recently\nobserved by Pich and Santhanam (2023). We show such a connection conditionally for the Implicit Extended Frege proof\nsystem ($\\mathsf{iEF}$) introduced by Kraj\\'i\\v{c}ek (The Journal of Symbolic\nLogic, 2004), capable of formalizing most of contemporary complexity theory. In\nparticular, we show that if $\\mathsf{iEF}$ proves efficiently the standard\nderandomization assumption that a concrete Boolean function is hard on average\nfor subexponential-size circuits, then any superpolynomial lower bound on the\nlength of $\\mathsf{iEF}$ proofs implies $\\#\\mathbf{P} \\not\\subseteq\n\\mathbf{FP}/\\operatorname{poly}$ (which would in turn imply, for example,\n$\\mathbf{PSPACE} \\not\\subseteq \\mathbf{P}/\\operatorname{poly}$). Our proof\nexploits the formalization inside $\\mathsf{iEF}$ of the soundness of the\nsum-check protocol of Lund, Fortnow, Karloff, and Nisan (Journal of the ACM,\n1992). This has consequences for the self-provability of circuit upper bounds\nin $\\mathsf{iEF}$. Interestingly, further improving our result seems to require\nprogress in constructing interactive proof systems with more efficient provers.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Folklore in complexity theory suspects that circuit lower bounds against $\mathbf{NC}^1$ or $\mathbf{P}/\operatorname{poly}$, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation $\mathbf{NEXP} \not\subseteq \mathbf{P}/\operatorname{poly}$, as recently observed by Pich and Santhanam (2023). We show such a connection conditionally for the Implicit Extended Frege proof system ($\mathsf{iEF}$) introduced by Kraj\'i\v{c}ek (The Journal of Symbolic Logic, 2004), capable of formalizing most of contemporary complexity theory. In particular, we show that if $\mathsf{iEF}$ proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of $\mathsf{iEF}$ proofs implies $\#\mathbf{P} \not\subseteq \mathbf{FP}/\operatorname{poly}$ (which would in turn imply, for example, $\mathbf{PSPACE} \not\subseteq \mathbf{P}/\operatorname{poly}$). Our proof exploits the formalization inside $\mathsf{iEF}$ of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan (Journal of the ACM, 1992). This has consequences for the self-provability of circuit upper bounds in $\mathsf{iEF}$. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.
通过交互式协议从证明复杂性到电路复杂性
复杂性理论的民间传说认为,针对$\mathbf{NC}^1$或$\mathbf{P}/\operatorname{poly}$的电路下界,目前还遥不可及,是为弗雷格或扩展弗雷格等系统证明强证明复杂性下界的必要步骤。然而,从形式上建立这样的联系已经令人生畏,因为这将意味着突破性的分离$mathbf{NEXP}/not/subsete$。\not\subseteq \mathbf{P}/\operatorname{poly}$, 正如 Pich 和 Santhanam (2023) 最近所观察到的。我们为克拉伊夫切克(《符号逻辑杂志》,2004 年)引入的隐式扩展弗雷格证明系统($\mathsf{iEF}$)展示了这种有条件的联系,它能够形式化大部分当代复杂性理论。特别是,我们证明了如果 $\mathsf{iEF}$ 能够有效证明标准随机化假设,即对于亚指数大小的电路来说,一个具体的布尔函数平均很难,那么 $\mathsf{iEF}$ 证明长度的任何超多项式下限都意味着 $\#\mathbf{P}\不是/subseteq/mathbf{FP}/operatorname{poly}$(这反过来又意味着,例如,$mathbf{PSPACE}/operatorname{poly}$)。\不是/subseteq (mathbf{P}//operatorname{poly}$)。我们的证明利用了 $\mathsf{iEF}$ 内部对 Lund、Fortnow、Karloff 和 Nisan 的求和校验协议(Journal of the ACM,1992)合理性的形式化。这对 $\mathsf{iEF}$ 中电路上界的自证明性产生了影响。有趣的是,要进一步改进我们的结果,似乎需要在构建具有更高效证明器的交互式证明系统方面取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信