{"title":"Strong Well-Posedness of the Q-Tensor Model for Liquid Crystals: The Case of Arbitrary Ratio of Tumbling and Aligning Effects \\(\\xi \\)","authors":"Matthias Hieber, Amru Hussein, Marc Wrona","doi":"10.1007/s00205-024-01983-z","DOIUrl":null,"url":null,"abstract":"<div><p>The Beris–Edwards model of nematic liquid crystals couples an equation for the molecular orientation described by the Q-tensor with a Navier–Stokes type equation with an additional non-Newtonian stress caused by the molecular orientation. Both equations contain a parameter <span>\\(\\xi \\in \\mathbb {R}\\)</span> measuring the ratio of tumbling and alignment effects. Previous well-posedness results largely vary on the space dimension <i>n</i> and the constraints of the parameter <span>\\(\\xi \\in \\mathbb {R}\\)</span>. This work addresses strong well-posedness of this model, first locally and then globally for small initial data, both in the <span>\\(L^p\\)</span>-<span>\\(L^2\\)</span>-setting for <span>\\(p > \\frac{4}{4-n}\\)</span>, in the general cases, i.e., for <span>\\(n = 2, 3\\)</span> and without any restriction on <span>\\(\\xi \\)</span>. The approach is based on methods from quasilinear equations and the fact that the associated linearized operator admits maximal <span>\\(L^p\\)</span>-<span>\\(L^2\\)</span>-regularity. The proof of the latter property relies on techniques from sectorial operators, Schur complements and <span>\\(\\mathcal {J}\\)</span>-symmetry.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01983-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01983-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The Beris–Edwards model of nematic liquid crystals couples an equation for the molecular orientation described by the Q-tensor with a Navier–Stokes type equation with an additional non-Newtonian stress caused by the molecular orientation. Both equations contain a parameter \(\xi \in \mathbb {R}\) measuring the ratio of tumbling and alignment effects. Previous well-posedness results largely vary on the space dimension n and the constraints of the parameter \(\xi \in \mathbb {R}\). This work addresses strong well-posedness of this model, first locally and then globally for small initial data, both in the \(L^p\)-\(L^2\)-setting for \(p > \frac{4}{4-n}\), in the general cases, i.e., for \(n = 2, 3\) and without any restriction on \(\xi \). The approach is based on methods from quasilinear equations and the fact that the associated linearized operator admits maximal \(L^p\)-\(L^2\)-regularity. The proof of the latter property relies on techniques from sectorial operators, Schur complements and \(\mathcal {J}\)-symmetry.