Strong Well-Posedness of the Q-Tensor Model for Liquid Crystals: The Case of Arbitrary Ratio of Tumbling and Aligning Effects \(\xi \)

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Matthias Hieber, Amru Hussein, Marc Wrona
{"title":"Strong Well-Posedness of the Q-Tensor Model for Liquid Crystals: The Case of Arbitrary Ratio of Tumbling and Aligning Effects \\(\\xi \\)","authors":"Matthias Hieber,&nbsp;Amru Hussein,&nbsp;Marc Wrona","doi":"10.1007/s00205-024-01983-z","DOIUrl":null,"url":null,"abstract":"<div><p>The Beris–Edwards model of nematic liquid crystals couples an equation for the molecular orientation described by the Q-tensor with a Navier–Stokes type equation with an additional non-Newtonian stress caused by the molecular orientation. Both equations contain a parameter <span>\\(\\xi \\in \\mathbb {R}\\)</span> measuring the ratio of tumbling and alignment effects. Previous well-posedness results largely vary on the space dimension <i>n</i> and the constraints of the parameter <span>\\(\\xi \\in \\mathbb {R}\\)</span>. This work addresses strong well-posedness of this model, first locally and then globally for small initial data, both in the <span>\\(L^p\\)</span>-<span>\\(L^2\\)</span>-setting for <span>\\(p &gt; \\frac{4}{4-n}\\)</span>, in the general cases, i.e., for <span>\\(n = 2, 3\\)</span> and without any restriction on <span>\\(\\xi \\)</span>. The approach is based on methods from quasilinear equations and the fact that the associated linearized operator admits maximal <span>\\(L^p\\)</span>-<span>\\(L^2\\)</span>-regularity. The proof of the latter property relies on techniques from sectorial operators, Schur complements and <span>\\(\\mathcal {J}\\)</span>-symmetry.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01983-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01983-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Beris–Edwards model of nematic liquid crystals couples an equation for the molecular orientation described by the Q-tensor with a Navier–Stokes type equation with an additional non-Newtonian stress caused by the molecular orientation. Both equations contain a parameter \(\xi \in \mathbb {R}\) measuring the ratio of tumbling and alignment effects. Previous well-posedness results largely vary on the space dimension n and the constraints of the parameter \(\xi \in \mathbb {R}\). This work addresses strong well-posedness of this model, first locally and then globally for small initial data, both in the \(L^p\)-\(L^2\)-setting for \(p > \frac{4}{4-n}\), in the general cases, i.e., for \(n = 2, 3\) and without any restriction on \(\xi \). The approach is based on methods from quasilinear equations and the fact that the associated linearized operator admits maximal \(L^p\)-\(L^2\)-regularity. The proof of the latter property relies on techniques from sectorial operators, Schur complements and \(\mathcal {J}\)-symmetry.

液晶 Q 张量模型的强好拟性:任意比例的翻滚效应和对齐效应的情况 $$\xi $$
向列液晶的 Beris-Edwards 模型将 Q 张量描述的分子取向方程与纳维-斯托克斯方程耦合在一起,后者带有由分子取向引起的附加非牛顿应力。这两个方程都包含一个参数 \(\xi \in \mathbb {R}\),用于测量翻滚效应和排列效应的比率。之前的拟合结果主要取决于空间维度 n 和参数 \(\xi \in \mathbb {R}\) 的约束条件。这项工作解决了这个模型的强好拟性问题,首先是局部的,然后是全局的,对于小的初始数据,无论是在 \(L^p\)-\(L^2\)-setting for \(p > \frac{4}{4-n}\),还是在一般情况下,即对于 \(n = 2, 3\) 以及对 \(\xi \)没有任何限制。这种方法基于准线性方程的方法,以及相关线性化算子具有最大(L^p\)-(L^2\)规则性这一事实。后一个性质的证明依赖于扇形算子、舒尔互补和(\mathcal {J}\)对称性的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信