Sand screen selection by sand retention test: a review of factors affecting sand control design

IF 2.4 4区 工程技术 Q3 ENERGY & FUELS
Javed Akbar Khan, Aimi Zahraa Zainal, Khairul Nizam Idris, Angga Pratama Herman, Baoping Cai, Mohd Azuwan Maoinser
{"title":"Sand screen selection by sand retention test: a review of factors affecting sand control design","authors":"Javed Akbar Khan, Aimi Zahraa Zainal, Khairul Nizam Idris, Angga Pratama Herman, Baoping Cai, Mohd Azuwan Maoinser","doi":"10.1007/s13202-024-01803-w","DOIUrl":null,"url":null,"abstract":"<p>The installation of sand screens in open-hole completions in the wellbore is crucial for managing sand production. The main reason for using standalone screens in open-hole completions is their relatively reduced operational complexity compared to other sand control technologies. However, directly applying the screen to the bottom of the hole can lead to an incorrect screen type selection, resulting in an unreliable sand control method. To address this issue, a sand retention test is conducted to evaluate the performance of a standalone screen before field installation. Nevertheless, current sand retention test setups encounter several challenges. These include difficulties in identifying minimum retention requirements, interpreting results in the context of field conditions, and replicating field-specific parameters. The existing sand retention test introduces uncertainties, such as inaccurately replicating field requirements, inconsistent selection of wetting fluids, flow rates, and channel formation, leading to variations in the choice of the optimal screen using this test. In response to these challenges, this study aims to review the sand retention test and propose an improved sand retention method to overcome these problems. The focus of this article is to provide an in-depth analysis of previous sand retention test setups, their contributions to characterizing sand screens, and the parameters utilized in determining test outcomes. Additionally, this review outlines a procedure to investigate the impact of different particle sizes on screen erosion. Key findings emphasize the importance of using high-quality materials, proper screen design to resist damage and erosion, achieving acceptable natural packing behind the screen, and considering factors such as geology, wellbore conditions, and installation techniques. The analysis reveals that a high quantity of finer and poorly sorted sand increases sand production. The study recommends performing a sand pack test closer to reservoir conditions for better evaluation. Premium sand screens demonstrate the highest retention capacity, followed by metal mesh and wire-wrapped screens. Additionally, geotextiles show potential for enhancing sand retention, and screen design affects erosion resistance and service life.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"49 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01803-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The installation of sand screens in open-hole completions in the wellbore is crucial for managing sand production. The main reason for using standalone screens in open-hole completions is their relatively reduced operational complexity compared to other sand control technologies. However, directly applying the screen to the bottom of the hole can lead to an incorrect screen type selection, resulting in an unreliable sand control method. To address this issue, a sand retention test is conducted to evaluate the performance of a standalone screen before field installation. Nevertheless, current sand retention test setups encounter several challenges. These include difficulties in identifying minimum retention requirements, interpreting results in the context of field conditions, and replicating field-specific parameters. The existing sand retention test introduces uncertainties, such as inaccurately replicating field requirements, inconsistent selection of wetting fluids, flow rates, and channel formation, leading to variations in the choice of the optimal screen using this test. In response to these challenges, this study aims to review the sand retention test and propose an improved sand retention method to overcome these problems. The focus of this article is to provide an in-depth analysis of previous sand retention test setups, their contributions to characterizing sand screens, and the parameters utilized in determining test outcomes. Additionally, this review outlines a procedure to investigate the impact of different particle sizes on screen erosion. Key findings emphasize the importance of using high-quality materials, proper screen design to resist damage and erosion, achieving acceptable natural packing behind the screen, and considering factors such as geology, wellbore conditions, and installation techniques. The analysis reveals that a high quantity of finer and poorly sorted sand increases sand production. The study recommends performing a sand pack test closer to reservoir conditions for better evaluation. Premium sand screens demonstrate the highest retention capacity, followed by metal mesh and wire-wrapped screens. Additionally, geotextiles show potential for enhancing sand retention, and screen design affects erosion resistance and service life.

Abstract Image

通过留砂试验选择筛砂:影响砂控制设计的因素综述
在井筒内的裸眼完井中安装防砂网对于管理产砂量至关重要。在裸眼完井中使用独立滤网的主要原因是,与其他防砂技术相比,其操作复杂性相对较低。然而,直接将滤网应用于孔底可能会导致滤网类型选择错误,从而导致不可靠的防砂方法。为了解决这个问题,在现场安装之前要进行留砂测试,以评估独立滤网的性能。然而,目前的留砂测试设置遇到了一些挑战。其中包括难以确定最低滞留要求、根据现场条件解释结果以及复制现场特定参数。现有的固沙试验会带来一些不确定因素,如不准确地复制现场要求、润湿流体选择不一致、流速和渠道形成等,从而导致在使用该试验选择最佳滤网时出现偏差。为应对这些挑战,本研究旨在对固沙试验进行回顾,并提出一种改进的固沙方法来克服这些问题。本文的重点是深入分析以往的留砂测试设置、其对砂筛特性的贡献以及用于确定测试结果的参数。此外,本文还概述了研究不同粒度对筛网侵蚀影响的程序。主要研究结果强调了使用优质材料的重要性、适当的滤网设计以抵御损坏和侵蚀、实现滤网后可接受的自然填料,以及考虑地质、井筒条件和安装技术等因素。分析表明,大量细砂和分选不良的砂子会增加产砂量。研究建议在更接近储层条件的情况下进行砂层测试,以便更好地进行评估。优质砂筛的滞留能力最高,其次是金属网筛和钢丝缠绕筛。此外,土工织物也显示出提高固沙能力的潜力,而筛网的设计会影响抗侵蚀性和使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
4.50%
发文量
151
审稿时长
13 weeks
期刊介绍: The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle. Focusing on: Reservoir characterization and modeling Unconventional oil and gas reservoirs Geophysics: Acquisition and near surface Geophysics Modeling and Imaging Geophysics: Interpretation Geophysics: Processing Production Engineering Formation Evaluation Reservoir Management Petroleum Geology Enhanced Recovery Geomechanics Drilling Completions The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信