Tianpei Cheng, Haijian Yang, Jizu Huang, Chao Yang
{"title":"Adaptive Space-Time Domain Decomposition for Multiphase Flow in Porous Media with Bound Constraints","authors":"Tianpei Cheng, Haijian Yang, Jizu Huang, Chao Yang","doi":"10.1137/23m1578139","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page B306-B330, June 2024. <br/> Abstract. This paper proposes an adaptive space-time algorithm based on domain decomposition for the large-scale simulation of a recently developed thermodynamically consistent reservoir problem. In the approach, the bound constraints are represented by means of a minimum-type complementarity function to enforce the positivity of the reservoir model, and a space-time mixed finite element method is applied for the parallel-in-time monolithic discretization. In particular, we propose a time-adaptive strategy using the improved backward differencing formula of second order, to take full advantage of the high degree of space-time parallelism. Moreover, the complicated dynamics with higher nonlinearity of space-time discretization require some innovative nonlinear and linear solution strategies. Therefore, we present a class of modified semismooth Newton algorithms to enhance the convergence rate of nonlinear iterations. Multilevel space-time restricted additive Schwarz algorithms, whose subdomains cover both space and time variables, are also studied for domain decomposition-based preconditioning. Numerical experiments demonstrate the robustness and parallel scalability of the proposed adaptive space-time algorithm on a supercomputer with tens of thousands of processor cores.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"20 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1578139","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page B306-B330, June 2024. Abstract. This paper proposes an adaptive space-time algorithm based on domain decomposition for the large-scale simulation of a recently developed thermodynamically consistent reservoir problem. In the approach, the bound constraints are represented by means of a minimum-type complementarity function to enforce the positivity of the reservoir model, and a space-time mixed finite element method is applied for the parallel-in-time monolithic discretization. In particular, we propose a time-adaptive strategy using the improved backward differencing formula of second order, to take full advantage of the high degree of space-time parallelism. Moreover, the complicated dynamics with higher nonlinearity of space-time discretization require some innovative nonlinear and linear solution strategies. Therefore, we present a class of modified semismooth Newton algorithms to enhance the convergence rate of nonlinear iterations. Multilevel space-time restricted additive Schwarz algorithms, whose subdomains cover both space and time variables, are also studied for domain decomposition-based preconditioning. Numerical experiments demonstrate the robustness and parallel scalability of the proposed adaptive space-time algorithm on a supercomputer with tens of thousands of processor cores.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.