{"title":"Rainbow Bases in Matroids","authors":"Florian Hörsch, Tomáš Kaiser, Matthias Kriesell","doi":"10.1137/22m1516750","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1472-1491, June 2024. <br/> Abstract. Recently, it was proved by Bérczi and Schwarcz that the problem of factorizing a matroid into rainbow bases with respect to a given partition of its ground set is algorithmically intractable. On the other hand, many special cases were left open. We first show that the problem remains hard if the matroid is graphic, answering a question of Bérczi and Schwarcz. As another special case, we consider the problem of deciding whether a given digraph can be factorized into subgraphs which are spanning trees in the underlying sense and respect upper bounds on the indegree of every vertex. We prove that this problem is also hard. This answers a question of Frank. In the second part of the article, we deal with the relaxed problem of covering the ground set of a matroid by rainbow bases. Among other results, we show that there is a linear function [math] such that every matroid that can be factorized into [math] bases for some [math] can be covered by [math] rainbow bases if every partition class contains at most 2 elements.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"41 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1516750","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1472-1491, June 2024. Abstract. Recently, it was proved by Bérczi and Schwarcz that the problem of factorizing a matroid into rainbow bases with respect to a given partition of its ground set is algorithmically intractable. On the other hand, many special cases were left open. We first show that the problem remains hard if the matroid is graphic, answering a question of Bérczi and Schwarcz. As another special case, we consider the problem of deciding whether a given digraph can be factorized into subgraphs which are spanning trees in the underlying sense and respect upper bounds on the indegree of every vertex. We prove that this problem is also hard. This answers a question of Frank. In the second part of the article, we deal with the relaxed problem of covering the ground set of a matroid by rainbow bases. Among other results, we show that there is a linear function [math] such that every matroid that can be factorized into [math] bases for some [math] can be covered by [math] rainbow bases if every partition class contains at most 2 elements.
期刊介绍:
SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution.
Topics include but are not limited to:
properties of and extremal problems for discrete structures
combinatorial optimization, including approximation algorithms
algebraic and enumerative combinatorics
coding and information theory
additive, analytic combinatorics and number theory
combinatorial matrix theory and spectral graph theory
design and analysis of algorithms for discrete structures
discrete problems in computational complexity
discrete and computational geometry
discrete methods in computational biology, and bioinformatics
probabilistic methods and randomized algorithms.