{"title":"Scientific Instrumentation Complex for the ExoMars-2022 Landing Platform","authors":"O. I. Korablev, D. S. Rodionov, L. M. Zelenyi","doi":"10.1134/S0038094624010064","DOIUrl":null,"url":null,"abstract":"<p>Scientific objectives, instruments, and measurement program of the scientific instrumentation of the <i>Kazachok</i> stationary landing platform of the State Corporation Roscosmos and the European Space Agency (ESA) ExoMars-2022 project are presented. The scientific objectives of research on the landing platform included the long-term climate monitoring, the studies of the atmospheric composition, the mechanisms for dust lifting and related electrical phenomena, atmosphere–surface interactions, the subsurface water abundance, monitoring the radiation situation, and the study of Mars internal structure. To address these problems, 11 Russian and two European instruments with a total mass of 45 kg were built, tested and integrated into the spacecraft. These include a television camera system, meteorological complexes, a suite for studying dust and related electrical phenomena, optical spectrometers and an analytical complex for studying the atmospheric composition, a microwave radiometer, the neutron and gamma spectrometers for surface research, a seismometer, magnetometers and a Mars proper motion experiment to study its internal structure. Although the ExoMars-2022 project has been discontinued, the scientific objectives of the landing platform have not lost their relevance, and the technical solutions and developments implemented in scientific equipment are of interest and promising for further Mars exploration.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"58 1","pages":"1 - 28"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0038094624010064.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0038094624010064","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Scientific objectives, instruments, and measurement program of the scientific instrumentation of the Kazachok stationary landing platform of the State Corporation Roscosmos and the European Space Agency (ESA) ExoMars-2022 project are presented. The scientific objectives of research on the landing platform included the long-term climate monitoring, the studies of the atmospheric composition, the mechanisms for dust lifting and related electrical phenomena, atmosphere–surface interactions, the subsurface water abundance, monitoring the radiation situation, and the study of Mars internal structure. To address these problems, 11 Russian and two European instruments with a total mass of 45 kg were built, tested and integrated into the spacecraft. These include a television camera system, meteorological complexes, a suite for studying dust and related electrical phenomena, optical spectrometers and an analytical complex for studying the atmospheric composition, a microwave radiometer, the neutron and gamma spectrometers for surface research, a seismometer, magnetometers and a Mars proper motion experiment to study its internal structure. Although the ExoMars-2022 project has been discontinued, the scientific objectives of the landing platform have not lost their relevance, and the technical solutions and developments implemented in scientific equipment are of interest and promising for further Mars exploration.
期刊介绍:
Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.