Cofinality Theorems of Infinity Categories and Algebraic K-Theory

Hisato Matsukawa
{"title":"Cofinality Theorems of Infinity Categories and Algebraic K-Theory","authors":"Hisato Matsukawa","doi":"arxiv-2405.03498","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a theorem that proves a condition when an\ninclusion morphism between simplicial sets becomes a weak homotopy equivalence.\nAdditionally, we present two applications of this result. The first application\ndemonstrates that cofinal full inclusion functors of (\\infty)-categories are\nweak homotopy equivalences. For our second application, we provide an\nalternative proof of Barwick's cofinality theorem of algebraic (K)-theory.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a theorem that proves a condition when an inclusion morphism between simplicial sets becomes a weak homotopy equivalence. Additionally, we present two applications of this result. The first application demonstrates that cofinal full inclusion functors of (\infty)-categories are weak homotopy equivalences. For our second application, we provide an alternative proof of Barwick's cofinality theorem of algebraic (K)-theory.
无穷范畴与代数 K 理论的同真性定理
在本文中,我们建立了一个定理,证明了当简单集之间的包含态成为弱同调等价时的一个条件。第一个应用证明了(\infty)-类的共终全包含函子是弱同调等价的。对于第二个应用,我们提供了代数(K)理论中巴威克同终定理的替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信