Carsten Carstensen, Benedikt Gräßle, Ngoc Tien Tran
{"title":"Adaptive hybrid high-order method for guaranteed lower eigenvalue bounds","authors":"Carsten Carstensen, Benedikt Gräßle, Ngoc Tien Tran","doi":"10.1007/s00211-024-01407-w","DOIUrl":null,"url":null,"abstract":"<p>The higher-order guaranteed lower eigenvalue bounds of the Laplacian in the recent work by Carstensen et al. (Numer Math 149(2):273–304, 2021) require a parameter <span>\\(C_{\\text {st},1}\\)</span> that is found <i>not</i> robust as the polynomial degree <i>p</i> increases. This is related to the <span>\\(H^1\\)</span> stability bound of the <span>\\(L^{2}\\)</span> projection onto polynomials of degree at most <i>p</i> and its growth <span>\\(C_{\\textrm{st, 1}}\\propto (p+1)^{1/2}\\)</span> as <span>\\(p \\rightarrow \\infty \\)</span>. A similar estimate for the Galerkin projection holds with a <i>p</i>-robust constant <span>\\(C_{\\text {st},2}\\)</span> and <span>\\(C_{\\text {st},2} \\le 2\\)</span> for right-isosceles triangles. This paper utilizes the new inequality with the constant <span>\\(C_{\\text {st},2}\\)</span> to design a modified hybrid high-order eigensolver that directly computes guaranteed lower eigenvalue bounds under the idealized hypothesis of exact solve of the generalized algebraic eigenvalue problem and a mild explicit condition on the maximal mesh-size in the simplicial mesh. A key advance is a <i>p</i>-robust parameter selection. The analysis of the new method with a different fine-tuned volume stabilization allows for a priori quasi-best approximation and improved <span>\\(L^{2}\\)</span> error estimates as well as a stabilization-free reliable and efficient a posteriori error control. The associated adaptive mesh-refining algorithm performs superior in computer benchmarks with striking numerical evidence for optimal higher empirical convergence rates.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"111 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01407-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The higher-order guaranteed lower eigenvalue bounds of the Laplacian in the recent work by Carstensen et al. (Numer Math 149(2):273–304, 2021) require a parameter \(C_{\text {st},1}\) that is found not robust as the polynomial degree p increases. This is related to the \(H^1\) stability bound of the \(L^{2}\) projection onto polynomials of degree at most p and its growth \(C_{\textrm{st, 1}}\propto (p+1)^{1/2}\) as \(p \rightarrow \infty \). A similar estimate for the Galerkin projection holds with a p-robust constant \(C_{\text {st},2}\) and \(C_{\text {st},2} \le 2\) for right-isosceles triangles. This paper utilizes the new inequality with the constant \(C_{\text {st},2}\) to design a modified hybrid high-order eigensolver that directly computes guaranteed lower eigenvalue bounds under the idealized hypothesis of exact solve of the generalized algebraic eigenvalue problem and a mild explicit condition on the maximal mesh-size in the simplicial mesh. A key advance is a p-robust parameter selection. The analysis of the new method with a different fine-tuned volume stabilization allows for a priori quasi-best approximation and improved \(L^{2}\) error estimates as well as a stabilization-free reliable and efficient a posteriori error control. The associated adaptive mesh-refining algorithm performs superior in computer benchmarks with striking numerical evidence for optimal higher empirical convergence rates.
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing