{"title":"Synergetic Approach to Constructing a Structured Turbulence Model","authors":"A. V. Kolesnichenko","doi":"10.1134/S0038094623070092","DOIUrl":null,"url":null,"abstract":"<p>The aim of this article is to acquaint the reader to the rapidly developing stochastic-thermodynamic theory of irreversible processes using as an example the modeling of structured turbulence. Here, we consider a synergetic approach to the development of a phenomenological model of extremely developed turbulence in a compressible homogeneous fluid, taking into account the nonlinear cooperative processes in it. Inclusion in the model of a set of random variables as internal parameters of the turbulent chaos subsystem, associated with its microstructure, makes it possible in this case to derive, using thermodynamic methods, the Fokker–Planck–Kolmogorov (FPK) kinetic equations in configuration space. Stabilization of the chaos subsystem near the next stationary nonequilibrium state in configuration space corresponds to the transition of the turbulent system to a new state, adequate to the emergence of complex spatiotemporal CSs in a turbulent flow.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"57 7","pages":"783 - 802"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0038094623070092","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this article is to acquaint the reader to the rapidly developing stochastic-thermodynamic theory of irreversible processes using as an example the modeling of structured turbulence. Here, we consider a synergetic approach to the development of a phenomenological model of extremely developed turbulence in a compressible homogeneous fluid, taking into account the nonlinear cooperative processes in it. Inclusion in the model of a set of random variables as internal parameters of the turbulent chaos subsystem, associated with its microstructure, makes it possible in this case to derive, using thermodynamic methods, the Fokker–Planck–Kolmogorov (FPK) kinetic equations in configuration space. Stabilization of the chaos subsystem near the next stationary nonequilibrium state in configuration space corresponds to the transition of the turbulent system to a new state, adequate to the emergence of complex spatiotemporal CSs in a turbulent flow.
期刊介绍:
Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.