Existence, Asymptotics, and Lyapunov Stability of Solutions of Periodic Parabolic Problems for Tikhonov-Type Reaction–Diffusion Systems

IF 0.6 4区 数学 Q3 MATHEMATICS
N. N. Nefedov
{"title":"Existence, Asymptotics, and Lyapunov Stability of Solutions of Periodic Parabolic Problems for Tikhonov-Type Reaction–Diffusion Systems","authors":"N. N. Nefedov","doi":"10.1134/s000143462401022x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study a new class of time-periodic solutions of singularly perturbed systems of reaction–diffusion equations in the case of a fast and a slow equation, which are usually called Tikhonov-type systems. A boundary layer asymptotics of solutions is constructed, the existence of solutions with this asymptotics is proved, and conditions for the Lyapunov asymptotic stability of these solutions treated as solutions of the corresponding initial–boudary value problems are obtained. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s000143462401022x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a new class of time-periodic solutions of singularly perturbed systems of reaction–diffusion equations in the case of a fast and a slow equation, which are usually called Tikhonov-type systems. A boundary layer asymptotics of solutions is constructed, the existence of solutions with this asymptotics is proved, and conditions for the Lyapunov asymptotic stability of these solutions treated as solutions of the corresponding initial–boudary value problems are obtained.

季霍诺夫型反应扩散系统的周期抛物线问题解的存在性、渐近性和李亚普诺夫稳定性
摘要 我们研究了反应扩散方程奇异扰动系统在快速方程和慢速方程情况下的一类新的时间周期解,这些方程通常被称为 Tikhonov 型系统。构建了解的边界层渐近线,证明了具有该渐近线的解的存在性,并得到了这些被视为相应初-轫值问题解的解的 Lyapunov 渐近稳定性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信