Characterization of locally standard, $\mathbb{Z}$-equivariantly formal manifolds in general position

Nikolas Wardenski
{"title":"Characterization of locally standard, $\\mathbb{Z}$-equivariantly formal manifolds in general position","authors":"Nikolas Wardenski","doi":"arxiv-2405.03319","DOIUrl":null,"url":null,"abstract":"We give a characterization of locally standard, $\\mathbb{Z}$-equivariantly\nformal manifolds in general position. In particular, we show that for dimension\n$2n$ at least $10$, to every such manifold with labeled GKM graph $\\Gamma$\nthere is an equivariantly formal torus manifold such that the restriction of\nthe $T^n$-action to a certain $T^{n-1}$-action yields the same labeled graph\n$\\Gamma$, thus showing that the (equivariant) cohomology with\n$\\mathbb{Z}$-coefficients of those manifolds has the same description as that\nof equivariantly formal torus manifolds.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a characterization of locally standard, $\mathbb{Z}$-equivariantly formal manifolds in general position. In particular, we show that for dimension $2n$ at least $10$, to every such manifold with labeled GKM graph $\Gamma$ there is an equivariantly formal torus manifold such that the restriction of the $T^n$-action to a certain $T^{n-1}$-action yields the same labeled graph $\Gamma$, thus showing that the (equivariant) cohomology with $\mathbb{Z}$-coefficients of those manifolds has the same description as that of equivariantly formal torus manifolds.
局部标准、$\mathbb{Z}$等价形式流形在一般位置上的表征
我们给出了一般位置的局部标准、$\mathbb{Z}$等价形式流形的特征。特别是,我们证明了对于维数$2n$至少为$10$的流形,每一个具有标注 GKM 图$\Gamma$的等变形式环流形都存在这样一个等变形式环流形,即将$T^n$作用限制为某个$T^{n-1}$作用会产生相同的标注图$\Gamma$、从而表明这些流形的(等变)同调与($mathbb{Z}$系数)与等变形式环流形的同调具有相同的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信