A Cloud-Edge Framework for Energy-Efficient Event-Driven Control: An Integration of Online Supervised Learning, Spiking Neural Networks and Local Plasticity Rules

Reza Ahmadvand, Sarah Safura Sharif, Yaser Mike Banad
{"title":"A Cloud-Edge Framework for Energy-Efficient Event-Driven Control: An Integration of Online Supervised Learning, Spiking Neural Networks and Local Plasticity Rules","authors":"Reza Ahmadvand, Sarah Safura Sharif, Yaser Mike Banad","doi":"arxiv-2405.02316","DOIUrl":null,"url":null,"abstract":"This paper presents a novel cloud-edge framework for addressing computational\nand energy constraints in complex control systems. Our approach centers around\na learning-based controller using Spiking Neural Networks (SNN) on physical\nplants. By integrating a biologically plausible learning method with local\nplasticity rules, we harness the efficiency, scalability, and low latency of\nSNNs. This design replicates control signals from a cloud-based controller\ndirectly on the plant, reducing the need for constant plant-cloud\ncommunication. The plant updates weights only when errors surpass predefined\nthresholds, ensuring efficiency and robustness in various conditions. Applied\nto linear workbench systems and satellite rendezvous scenarios, including\nobstacle avoidance, our architecture dramatically lowers normalized tracking\nerror by 96% with increased network size. The event-driven nature of SNNs\nminimizes energy consumption, utilizing only about 111 nJ (0.3% of conventional\ncomputing requirements). The results demonstrate the system's adjustment to\nchanging work environments and its efficient use of computational and energy\nresources, with a moderate increase in energy consumption of 27.2% and 37% for\nstatic and dynamic obstacles, respectively, compared to non-obstacle scenarios.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel cloud-edge framework for addressing computational and energy constraints in complex control systems. Our approach centers around a learning-based controller using Spiking Neural Networks (SNN) on physical plants. By integrating a biologically plausible learning method with local plasticity rules, we harness the efficiency, scalability, and low latency of SNNs. This design replicates control signals from a cloud-based controller directly on the plant, reducing the need for constant plant-cloud communication. The plant updates weights only when errors surpass predefined thresholds, ensuring efficiency and robustness in various conditions. Applied to linear workbench systems and satellite rendezvous scenarios, including obstacle avoidance, our architecture dramatically lowers normalized tracking error by 96% with increased network size. The event-driven nature of SNNs minimizes energy consumption, utilizing only about 111 nJ (0.3% of conventional computing requirements). The results demonstrate the system's adjustment to changing work environments and its efficient use of computational and energy resources, with a moderate increase in energy consumption of 27.2% and 37% for static and dynamic obstacles, respectively, compared to non-obstacle scenarios.
高能效事件驱动控制的云边缘框架:在线监督学习、尖峰神经网络和局部可塑性规则的整合
本文提出了一种新颖的云边框架,用于解决复杂控制系统中的计算和能源限制问题。我们的方法以基于学习的控制器为中心,在物理植物上使用尖峰神经网络(SNN)。通过将生物学上可行的学习方法与局部可塑性规则相结合,我们利用了尖峰神经网络的高效性、可扩展性和低延迟性。这种设计可直接在植物上复制来自云控制器的控制信号,从而减少了植物与云之间持续通信的需要。只有当误差超过预定阈值时,工厂才会更新权重,从而确保在各种条件下的效率和鲁棒性。将我们的架构应用于线性工作台系统和卫星交会场景(包括避障)时,随着网络规模的扩大,归一化跟踪误差大幅降低了 96%。SNN的事件驱动特性最大限度地降低了能耗,仅消耗约111 nJ(传统计算需求的0.3%)。结果表明,该系统能适应不断变化的工作环境,并有效利用计算和能源资源,与无障碍场景相比,静态和动态障碍物的能耗分别增加了 27.2% 和 37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信