Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options

Jiefei Yang, Guanglian Li
{"title":"Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options","authors":"Jiefei Yang, Guanglian Li","doi":"arxiv-2405.02570","DOIUrl":null,"url":null,"abstract":"We propose an efficient and easy-to-implement gradient-enhanced least squares\nMonte Carlo method for computing price and Greeks (i.e., derivatives of the\nprice function) of high-dimensional American options. It employs the sparse\nHermite polynomial expansion as a surrogate model for the continuation value\nfunction, and essentially exploits the fast evaluation of gradients. The\nexpansion coefficients are computed by solving a linear least squares problem\nthat is enhanced by gradient information of simulated paths. We analyze the\nconvergence of the proposed method, and establish an error estimate in terms of\nthe best approximation error in the weighted $H^1$ space, the statistical error\nof solving discrete least squares problems, and the time step size. We present\ncomprehensive numerical experiments to illustrate the performance of the\nproposed method. The results show that it outperforms the state-of-the-art\nleast squares Monte Carlo method with more accurate price, Greeks, and optimal\nexercise strategies in high dimensions but with nearly identical computational\ncost, and it can deliver comparable results with recent neural network-based\nmethods up to dimension 100.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an efficient and easy-to-implement gradient-enhanced least squares Monte Carlo method for computing price and Greeks (i.e., derivatives of the price function) of high-dimensional American options. It employs the sparse Hermite polynomial expansion as a surrogate model for the continuation value function, and essentially exploits the fast evaluation of gradients. The expansion coefficients are computed by solving a linear least squares problem that is enhanced by gradient information of simulated paths. We analyze the convergence of the proposed method, and establish an error estimate in terms of the best approximation error in the weighted $H^1$ space, the statistical error of solving discrete least squares problems, and the time step size. We present comprehensive numerical experiments to illustrate the performance of the proposed method. The results show that it outperforms the state-of-the-art least squares Monte Carlo method with more accurate price, Greeks, and optimal exercise strategies in high dimensions but with nearly identical computational cost, and it can deliver comparable results with recent neural network-based methods up to dimension 100.
用于高维美式期权定价和对冲的梯度增强稀疏赫米特多项式展开法
我们提出了一种高效且易于实现的梯度增强最小二乘蒙特卡洛方法,用于计算高维美式期权的价格和希腊(即价格函数的导数)。该方法采用稀疏赫尔米特多项式展开作为延续价值函数的替代模型,本质上利用了梯度的快速评估。扩展系数是通过求解线性最小二乘法问题计算得出的,该问题通过模拟路径的梯度信息得到增强。我们分析了所提方法的收敛性,并根据加权 $H^1$ 空间的最佳近似误差、求解离散最小二乘问题的统计误差和时间步长建立了误差估计。我们通过全面的数值实验来说明所提方法的性能。结果表明,在高维度下,该方法的性能优于最先进的最小二乘法蒙特卡洛方法,其价格、希腊字母和优化练习策略更加精确,但计算成本几乎相同,而且在维度达到 100 时,该方法可以提供与最近基于神经网络的方法相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信