On a Four-Valued Logic of Formal Inconsistency and Formal Undeterminedness

Pub Date : 2024-05-03 DOI:10.1007/s11225-024-10106-4
Marcelo E. Coniglio, G. T. Gomez–Pereira, Martín Figallo
{"title":"On a Four-Valued Logic of Formal Inconsistency and Formal Undeterminedness","authors":"Marcelo E. Coniglio, G. T. Gomez–Pereira, Martín Figallo","doi":"10.1007/s11225-024-10106-4","DOIUrl":null,"url":null,"abstract":"<p>Belnap–Dunn’s relevance logic, <span>\\(\\textsf{BD}\\)</span>, was designed seeking a suitable logical device for dealing with multiple information sources which sometimes may provide inconsistent and/or incomplete pieces of information. <span>\\(\\textsf{BD}\\)</span> is a four-valued logic which is both paraconsistent and paracomplete. On the other hand, De and Omori, while investigating what classical negation amounts to in a paracomplete and paraconsistent four-valued setting, proposed the expansion <span>\\(\\textsf{BD2}\\)</span> of the four valued Belnap–Dunn logic by a classical negation. In this paper, we introduce a four-valued expansion of <span>BD</span> called <span>\\({\\textsf{BD}^\\copyright }\\)</span>, obtained by adding an unary connective <span>\\({\\copyright }\\,\\ \\)</span>which is a consistency operator (in the sense of the Logics of Formal Inconsistency, <b>LFI</b>s). In addition, this operator is the unique one with the following features: it extends to <span>\\(\\textsf{BD}\\)</span> the consistency operator of <span>LFI1</span>, a well-known three-valued <b>LFI</b>, still satisfying axiom <b>ciw</b> (which states that any sentence is either consistent or contradictory), and allowing to define an undeterminedness operator (in the sense of Logic of Formal Undeterminedness, <b>LFU</b>s). Moreover, <span>\\({\\textsf{BD}^\\copyright }\\)</span> is maximal w.r.t. <span>LFI1</span>, and it is proved to be equivalent to <span>BD2</span>, up to signature. After presenting a natural Hilbert-style characterization of <span>\\({\\textsf{BD}^\\copyright }\\)</span> obtained by means of twist-structures semantics, we propose a first-order version of <span>\\({\\textsf{BD}^\\copyright }\\)</span> called <span>\\({\\textsf{QBD}^\\copyright }\\)</span>, with semantics based on an appropriate notion of four-valued Tarskian-like structures called <span>\\(\\textbf{4}\\)</span>-structures. We show that in <span>\\({\\textsf{QBD}^\\copyright }\\)</span>, the existential and universal quantifiers are interdefinable in terms of the paracomplete and paraconsistent negation, and not by means of the classical negation. Finally, a Hilbert-style calculus for <span>\\({\\textsf{QBD}^\\copyright }\\)</span> is presented, proving the corresponding soundness and completeness theorems.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10106-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Belnap–Dunn’s relevance logic, \(\textsf{BD}\), was designed seeking a suitable logical device for dealing with multiple information sources which sometimes may provide inconsistent and/or incomplete pieces of information. \(\textsf{BD}\) is a four-valued logic which is both paraconsistent and paracomplete. On the other hand, De and Omori, while investigating what classical negation amounts to in a paracomplete and paraconsistent four-valued setting, proposed the expansion \(\textsf{BD2}\) of the four valued Belnap–Dunn logic by a classical negation. In this paper, we introduce a four-valued expansion of BD called \({\textsf{BD}^\copyright }\), obtained by adding an unary connective \({\copyright }\,\ \)which is a consistency operator (in the sense of the Logics of Formal Inconsistency, LFIs). In addition, this operator is the unique one with the following features: it extends to \(\textsf{BD}\) the consistency operator of LFI1, a well-known three-valued LFI, still satisfying axiom ciw (which states that any sentence is either consistent or contradictory), and allowing to define an undeterminedness operator (in the sense of Logic of Formal Undeterminedness, LFUs). Moreover, \({\textsf{BD}^\copyright }\) is maximal w.r.t. LFI1, and it is proved to be equivalent to BD2, up to signature. After presenting a natural Hilbert-style characterization of \({\textsf{BD}^\copyright }\) obtained by means of twist-structures semantics, we propose a first-order version of \({\textsf{BD}^\copyright }\) called \({\textsf{QBD}^\copyright }\), with semantics based on an appropriate notion of four-valued Tarskian-like structures called \(\textbf{4}\)-structures. We show that in \({\textsf{QBD}^\copyright }\), the existential and universal quantifiers are interdefinable in terms of the paracomplete and paraconsistent negation, and not by means of the classical negation. Finally, a Hilbert-style calculus for \({\textsf{QBD}^\copyright }\) is presented, proving the corresponding soundness and completeness theorems.

分享
查看原文
论形式不一致和形式不确定的四值逻辑
贝尔纳普-邓恩的相关性逻辑(relevance logic)是为处理有时可能提供不一致和/或不完整信息的多个信息源而设计的一种合适的逻辑装置。\(\textsf{BD}\)是一个四值逻辑,它既是准一致的,又是准完备的。另一方面,De 和 Omori 在研究经典否定在准完备和准一致的四值环境中的作用时,提出了用经典否定来扩展四值贝尔纳普-邓恩逻辑的 (\textsf{BD2}\)。在本文中,我们引入了四值贝尔纳普-邓恩逻辑的扩展,称为 ({\textsf{BD}^\copyright }\),它是通过添加一个一元连接词 ({\copyright }\,\)得到的,而这个一元连接词是一个一致性算子(在形式不一致逻辑(Logics of Formal Inconsistency, LFIs)的意义上)。此外,这个算子是唯一一个具有以下特征的算子:它扩展到了\(\textsf{BD}\) LFI1 的一致性算子,这是一个著名的三值 LFI,仍然满足公理 ciw(该公理指出任何句子要么是一致的要么是矛盾的),并且允许定义一个不确定度算子(在形式不确定度逻辑的意义上,LFUs)。此外,({\textsf{BD}^\copyright }\) 在 LFI1 中是最大的,而且它被证明等价于 BD2,直到签名为止。在介绍了通过扭转结构语义得到的 \({\textsf{BD}^\copyright }\) 的自然希尔伯特式特征之后,我们提出了 \({\textsf{BD}^\copyright }\) 的一阶版本,称为 \({\textsf{QBD}^\copyright }\) ,其语义基于一个适当的四值塔斯基类结构概念,称为 \(\textbf{4}\)-structures 。我们证明了在\({\textsf{QBD}^\copyright }\) 中,存在量词和普遍量词是可以通过准完全否定和准一致否定来相互定义的,而不是通过经典否定来定义的。最后,提出了一个希尔伯特式的({\textsf{QBD}^\copyright }\ )微积分,证明了相应的健全性和完备性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信