Paraconsistency in Non-Fregean Framework

Pub Date : 2024-05-03 DOI:10.1007/s11225-024-10114-4
Joanna Golińska-Pilarek
{"title":"Paraconsistency in Non-Fregean Framework","authors":"Joanna Golińska-Pilarek","doi":"10.1007/s11225-024-10114-4","DOIUrl":null,"url":null,"abstract":"<p>A non-Fregean framework aims to provide a formal tool for reasoning about semantic denotations of sentences and their interactions. Extending a logic to its non-Fregean version involves introducing a new connective <span>\\(\\equiv \\)</span> that allows to separate denotations of sentences from their logical values. Intuitively, <span>\\(\\equiv \\)</span> combines two sentences <span>\\(\\varphi \\)</span> and <span>\\(\\psi \\)</span> into a true one whenever <span>\\(\\varphi \\)</span> and <span>\\(\\psi \\)</span> have the same semantic correlates, describe the same situations, or have the same content or meaning. The paper aims to compare non-Fregean paraconsistent Grzegorczyk’s logics (Logic of Descriptions <span>\\(\\textsf{LD}\\)</span>, Logic of Descriptions with Suszko’s Axioms <span>\\(\\textsf{LDS}\\)</span>, Logic of Equimeaning <span>\\(\\textsf{LDE}\\)</span>) with non-Fregean versions of certain well-known paraconsistent logics (Jaśkowski’s Discussive Logic <span>\\(\\textsf{D}_2\\)</span>, Logic of Paradox <span>\\(\\textsf{LP}\\)</span>, Logics of Formal Inconsistency <span>\\(\\textsf{LFI}{1}\\)</span> and <span>\\(\\textsf{LFI}{2}\\)</span>). We prove that Grzegorczyk’s logics are either weaker than or incomparable to non-Fregean extensions of <span>\\(\\textsf{LP}\\)</span>, <span>\\(\\textsf{LFI}{1}\\)</span>, <span>\\(\\textsf{LFI}{2}\\)</span>. Furthermore, we show that non-Fregean extensions of <span>\\(\\textsf{LP}\\)</span>, <span>\\(\\textsf{LFI}{1}\\)</span>, <span>\\(\\textsf{LFI}{2}\\)</span>, and <span>\\(\\textsf{D}_2\\)</span> are more expressive than their original counterparts. Our results highlight that the non-Fregean connective <span>\\(\\equiv \\)</span> can serve as a tool for expressing various properties of the ontology underlying the logics under consideration.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10114-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A non-Fregean framework aims to provide a formal tool for reasoning about semantic denotations of sentences and their interactions. Extending a logic to its non-Fregean version involves introducing a new connective \(\equiv \) that allows to separate denotations of sentences from their logical values. Intuitively, \(\equiv \) combines two sentences \(\varphi \) and \(\psi \) into a true one whenever \(\varphi \) and \(\psi \) have the same semantic correlates, describe the same situations, or have the same content or meaning. The paper aims to compare non-Fregean paraconsistent Grzegorczyk’s logics (Logic of Descriptions \(\textsf{LD}\), Logic of Descriptions with Suszko’s Axioms \(\textsf{LDS}\), Logic of Equimeaning \(\textsf{LDE}\)) with non-Fregean versions of certain well-known paraconsistent logics (Jaśkowski’s Discussive Logic \(\textsf{D}_2\), Logic of Paradox \(\textsf{LP}\), Logics of Formal Inconsistency \(\textsf{LFI}{1}\) and \(\textsf{LFI}{2}\)). We prove that Grzegorczyk’s logics are either weaker than or incomparable to non-Fregean extensions of \(\textsf{LP}\), \(\textsf{LFI}{1}\), \(\textsf{LFI}{2}\). Furthermore, we show that non-Fregean extensions of \(\textsf{LP}\), \(\textsf{LFI}{1}\), \(\textsf{LFI}{2}\), and \(\textsf{D}_2\) are more expressive than their original counterparts. Our results highlight that the non-Fregean connective \(\equiv \) can serve as a tool for expressing various properties of the ontology underlying the logics under consideration.

分享
查看原文
非弗雷格框架中的准一致性
非弗雷格框架旨在为句子的语义指称及其相互作用的推理提供一个形式化的工具。将一个逻辑扩展到它的非弗雷格版本涉及到引入一个新的连接词 (\(\equiv \)),它允许将句子的指称与它们的逻辑值分开。直观地说,只要 \(\varphi \) 和 \(\psi \) 有相同的语义关联,描述相同的情况,或者有相同的内容或意义,\(\equiv \)就会把两个句子 \(\varphi \)和 \(\psi \)组合成一个真句子。本文旨在比较非弗雷格准相容的格热戈日克逻辑(Logic of Descriptions \(\textsf{LD}\)、Logic of Descriptions with Suszko's Axioms \(\textsf{LDS}\)、等价逻辑(Logic of Equimeaning))与某些著名的准一致逻辑(雅斯科夫斯基的讨论逻辑(Jaśkowski's Discussive Logic)、悖论逻辑(Logic of Paradox)、形式不一致逻辑(Logics of Formal Inconsistency)的非弗雷格版本((\textsf{LFI}{1}\)和(\textsf{LFI}{2}\))。我们证明格热戈日克的逻辑要么弱于要么无法与非弗雷格扩展的(\textsf{LP}\)、(\textsf{LFI}{1}\)、(\textsf{LFI}{2}\)相提并论。此外,我们还证明了 \(\textsf{LP}\)、\(\textsf{LFI}{1}\)、\(\textsf{LFI}{2}\)和\(\textsf{D}_2\)的非弗赖根扩展比它们原来的扩展更具表现力。我们的研究结果突出表明,非自由连接词(equiv)可以作为一种工具来表达所考虑的逻辑所依据的本体的各种属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信