Propositional Type Theory of Indeterminacy

Pub Date : 2024-05-03 DOI:10.1007/s11225-024-10099-0
Víctor Aranda, Manuel Martins, María Manzano
{"title":"Propositional Type Theory of Indeterminacy","authors":"Víctor Aranda, Manuel Martins, María Manzano","doi":"10.1007/s11225-024-10099-0","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to define a partial Propositional Type Theory. Our system is partial in a double sense: the hierarchy of (propositional) types contains partial functions and some expressions of the language, including formulas, may be undefined. The specific interpretation we give to the undefined value is that of Kleene’s strong logic of indeterminacy. We present a semantics for the new system and prove that every element of any domain of the hierarchy has a name in the object language. Finally, we provide a proof system and a (constructive) proof of completeness.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10099-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to define a partial Propositional Type Theory. Our system is partial in a double sense: the hierarchy of (propositional) types contains partial functions and some expressions of the language, including formulas, may be undefined. The specific interpretation we give to the undefined value is that of Kleene’s strong logic of indeterminacy. We present a semantics for the new system and prove that every element of any domain of the hierarchy has a name in the object language. Finally, we provide a proof system and a (constructive) proof of completeness.

分享
查看原文
不确定性的命题类型理论
本文的目的是定义一个部分命题类型理论。我们的系统在双重意义上是部分的:(命题)类型的层次结构包含部分函数,语言的某些表达(包括公式)可能是未定义的。我们对未定义值的具体解释是克莱因的强不确定性逻辑。我们提出了新系统的语义,并证明层次结构中任何域的每个元素在对象语言中都有一个名称。最后,我们提供了一个证明系统和一个(构造性)完备性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信