Amirhossein Akbar Tabatabai, Majid Alizadeh, Masoud Memarzadeh
{"title":"On a Generalization of Heyting Algebras I","authors":"Amirhossein Akbar Tabatabai, Majid Alizadeh, Masoud Memarzadeh","doi":"10.1007/s11225-024-10110-8","DOIUrl":null,"url":null,"abstract":"<p><span>\\(\\nabla \\)</span>-algebra is a natural generalization of Heyting algebra, unifying many algebraic structures including bounded lattices, Heyting algebras, temporal Heyting algebras and the algebraic presentation of the dynamic topological systems. In a series of two papers, we will systematically study the algebro-topological properties of different varieties of <span>\\(\\nabla \\)</span>-algebras. In the present paper, we start with investigating the structure of these varieties by characterizing their subdirectly irreducible and simple elements. Then, we prove the closure of these varieties under the Dedekind-MacNeille completion and provide the canonical construction and the Kripke representation for <span>\\(\\nabla \\)</span>-algebras by which we establish the amalgamation property for some varieties of <span>\\(\\nabla \\)</span>-algebras. In the sequel of the present paper, we will complete the study by covering the logics of these varieties and their corresponding Priestley-Esakia and spectral duality theories.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"101 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10110-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
\(\nabla \)-algebra is a natural generalization of Heyting algebra, unifying many algebraic structures including bounded lattices, Heyting algebras, temporal Heyting algebras and the algebraic presentation of the dynamic topological systems. In a series of two papers, we will systematically study the algebro-topological properties of different varieties of \(\nabla \)-algebras. In the present paper, we start with investigating the structure of these varieties by characterizing their subdirectly irreducible and simple elements. Then, we prove the closure of these varieties under the Dedekind-MacNeille completion and provide the canonical construction and the Kripke representation for \(\nabla \)-algebras by which we establish the amalgamation property for some varieties of \(\nabla \)-algebras. In the sequel of the present paper, we will complete the study by covering the logics of these varieties and their corresponding Priestley-Esakia and spectral duality theories.
期刊介绍:
The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.