Sándor István Mahó, Sergiy Vasylkevych, Nedjeljka Žagar
{"title":"Excitation of mixed Rossby–gravity waves by wave–mean flow interactions on the sphere","authors":"Sándor István Mahó, Sergiy Vasylkevych, Nedjeljka Žagar","doi":"10.1002/qj.4742","DOIUrl":null,"url":null,"abstract":"The equatorial mixed Rossby–gravity wave (MRGW) is an important contributor to tropical variability. Its excitation mechanism capable of explaining the observed MRGW variance peak at synoptic scales in the troposphere remains elusive. This study investigates wave–mean flow interactions as a generation process for the MRGWs using the TIGAR model, which employs Hough harmonics as the basis of spectral expansion on the sphere, thereby representing MRGWs as prognostic variables. Idealized numerical simulations reveal the interactions between waves emanating from a symmetric tropical heat source and an asymmetric subtropical zonal jet as an excitation mechanism for the MRGWs. The excited MRGWs have variance spectra resembling the observed MRGWs in the tropical troposphere. The mixed Rossby–gravity energy spectrum has a maximum at zonal wavenumbers –5 also in the case of an asymmetric forcing that generates MRGWs across large scales. Effects of wave–wave interactions appear of little importance for the MRGW growth compared with wave–mean flow interactions. Application of the zonal‐mean zonal wind profiles from ERA5 reaffirms the importance of the asymmetry of the zonal mean flow.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4742","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The equatorial mixed Rossby–gravity wave (MRGW) is an important contributor to tropical variability. Its excitation mechanism capable of explaining the observed MRGW variance peak at synoptic scales in the troposphere remains elusive. This study investigates wave–mean flow interactions as a generation process for the MRGWs using the TIGAR model, which employs Hough harmonics as the basis of spectral expansion on the sphere, thereby representing MRGWs as prognostic variables. Idealized numerical simulations reveal the interactions between waves emanating from a symmetric tropical heat source and an asymmetric subtropical zonal jet as an excitation mechanism for the MRGWs. The excited MRGWs have variance spectra resembling the observed MRGWs in the tropical troposphere. The mixed Rossby–gravity energy spectrum has a maximum at zonal wavenumbers –5 also in the case of an asymmetric forcing that generates MRGWs across large scales. Effects of wave–wave interactions appear of little importance for the MRGW growth compared with wave–mean flow interactions. Application of the zonal‐mean zonal wind profiles from ERA5 reaffirms the importance of the asymmetry of the zonal mean flow.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.