Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control

Mohamed-Khalil Bouzidi, Bojan Derajic, Daniel Goehring, Joerg Reichardt
{"title":"Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control","authors":"Mohamed-Khalil Bouzidi, Bojan Derajic, Daniel Goehring, Joerg Reichardt","doi":"arxiv-2405.03470","DOIUrl":null,"url":null,"abstract":"In complex traffic environments, autonomous vehicles face multi-modal\nuncertainty about other agents' future behavior. To address this, recent\nadvancements in learningbased motion predictors output multi-modal predictions.\nWe present our novel framework that leverages Branch Model Predictive\nControl(BMPC) to account for these predictions. The framework includes an\nonline scenario-selection process guided by topology and collision risk\ncriteria. This efficiently selects a minimal set of predictions, rendering the\nBMPC realtime capable. Additionally, we introduce an adaptive decision\npostponing strategy that delays the planner's commitment to a single scenario\nuntil the uncertainty is resolved. Our comprehensive evaluations in traffic\nintersection and random highway merging scenarios demonstrate enhanced comfort\nand safety through our method.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In complex traffic environments, autonomous vehicles face multi-modal uncertainty about other agents' future behavior. To address this, recent advancements in learningbased motion predictors output multi-modal predictions. We present our novel framework that leverages Branch Model Predictive Control(BMPC) to account for these predictions. The framework includes an online scenario-selection process guided by topology and collision risk criteria. This efficiently selects a minimal set of predictions, rendering the BMPC realtime capable. Additionally, we introduce an adaptive decision postponing strategy that delays the planner's commitment to a single scenario until the uncertainty is resolved. Our comprehensive evaluations in traffic intersection and random highway merging scenarios demonstrate enhanced comfort and safety through our method.
不确定性条件下的运动规划:将基于学习的多模式预测器集成到分支模型预测控制中
在复杂的交通环境中,自动驾驶车辆面临着其他驾驶员未来行为的多模态不确定性。为了解决这个问题,基于学习的运动预测器最近取得了进步,可以输出多模式预测。我们提出了新颖的框架,利用分支模型预测控制(BMPC)来考虑这些预测。该框架包括一个以拓扑和碰撞风险标准为指导的在线场景选择过程。这能有效地选择最小的预测集,使 BMPC 具备实时能力。此外,我们还引入了一种自适应决策推迟策略,在不确定性得到解决之前,推迟规划者对单一场景的承诺。我们在交通路口和随机高速公路合并场景中进行的综合评估表明,我们的方法提高了舒适性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信