Yang Liu, Kui Xu, Xiaochen Xia, Wei Xie, Nan Ma, Jianhui Xu
{"title":"Joint power control and passive beamforming optimization in RIS-assisted anti-jamming communication","authors":"Yang Liu, Kui Xu, Xiaochen Xia, Wei Xie, Nan Ma, Jianhui Xu","doi":"10.1631/fitee.2200646","DOIUrl":null,"url":null,"abstract":"<p>Due to the openness of the wireless propagation environment, wireless networks are highly susceptible to malicious jamming, which significantly impacts their legitimate communication performance. This study investigates a reconfigurable intelligent surface (RIS) assisted anti-jamming communication system. Specifically, the objective is to enhance the system’s anti-jamming performance by optimizing the transmitting power of the base station and the passive beamforming of the RIS. Taking into account the dynamic and unpredictable nature of a smart jammer, the problem of joint optimization of transmitting power and RIS reflection coefficients is modeled as a Markov decision process (MDP). To tackle the complex and coupled decision problem, we propose a learning framework based on the double deep Q-network (DDQN) to improve the system achievable rate and energy efficiency. Unlike most power-domain jamming mitigation methods that require information on the jamming power, the proposed DDQN algorithm is better able to adapt to dynamic and unknown environments without relying on the prior information about jamming power. Finally, simulation results demonstrate that the proposed algorithm outperforms multi-armed bandit (MAB) and deep Q-network (DQN) schemes in terms of the anti-jamming performance and energy efficiency.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200646","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the openness of the wireless propagation environment, wireless networks are highly susceptible to malicious jamming, which significantly impacts their legitimate communication performance. This study investigates a reconfigurable intelligent surface (RIS) assisted anti-jamming communication system. Specifically, the objective is to enhance the system’s anti-jamming performance by optimizing the transmitting power of the base station and the passive beamforming of the RIS. Taking into account the dynamic and unpredictable nature of a smart jammer, the problem of joint optimization of transmitting power and RIS reflection coefficients is modeled as a Markov decision process (MDP). To tackle the complex and coupled decision problem, we propose a learning framework based on the double deep Q-network (DDQN) to improve the system achievable rate and energy efficiency. Unlike most power-domain jamming mitigation methods that require information on the jamming power, the proposed DDQN algorithm is better able to adapt to dynamic and unknown environments without relying on the prior information about jamming power. Finally, simulation results demonstrate that the proposed algorithm outperforms multi-armed bandit (MAB) and deep Q-network (DQN) schemes in terms of the anti-jamming performance and energy efficiency.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.