{"title":"Discontinuous Galerkin finite element method for dynamic viscoelasticity models of power‐law type","authors":"Yongseok Jang, Simon Shaw","doi":"10.1002/num.23107","DOIUrl":null,"url":null,"abstract":"Linear viscoelasticity can be characterized by a stress relaxation function. We consider a power‐law type stress relaxation to yield a fractional order viscoelasticity model. The governing equation is a Volterra integral problem of the second kind with a weakly singular kernel. We employ spatially discontinuous Galerkin methods, <jats:italic>symmetric interior penalty Galerkin method</jats:italic> (SIPG) for spatial discretization, and the implicit finite difference schemes in time, <jats:italic>Crank–Nicolson method</jats:italic>. Further, in order to manage the weak singularity in the Volterra kernel, we use a linear interpolation technique. We present a priori stability and error analyses without relying on Grönwall's inequality, and so provide high quality bounds that do not increase exponentially in time. This indicates that our numerical scheme is well‐suited for long‐time simulations. Despite the limited regularity in time, we establish suboptimal fractional order accuracy in time as well as optimal convergence of SIPG. We carry out numerical experiments with varying regularity of exact solutions to validate our error estimates. Finally, we present numerical simulations based on real material data.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Linear viscoelasticity can be characterized by a stress relaxation function. We consider a power‐law type stress relaxation to yield a fractional order viscoelasticity model. The governing equation is a Volterra integral problem of the second kind with a weakly singular kernel. We employ spatially discontinuous Galerkin methods, symmetric interior penalty Galerkin method (SIPG) for spatial discretization, and the implicit finite difference schemes in time, Crank–Nicolson method. Further, in order to manage the weak singularity in the Volterra kernel, we use a linear interpolation technique. We present a priori stability and error analyses without relying on Grönwall's inequality, and so provide high quality bounds that do not increase exponentially in time. This indicates that our numerical scheme is well‐suited for long‐time simulations. Despite the limited regularity in time, we establish suboptimal fractional order accuracy in time as well as optimal convergence of SIPG. We carry out numerical experiments with varying regularity of exact solutions to validate our error estimates. Finally, we present numerical simulations based on real material data.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.