Distributionally Robust Federated Learning for Mobile Edge Networks

Long Tan Le, Tung-Anh Nguyen, Tuan-Dung Nguyen, Nguyen H. Tran, Nguyen Binh Truong, Phuong L. Vo, Bui Thanh Hung, Tuan Anh Le
{"title":"Distributionally Robust Federated Learning for Mobile Edge Networks","authors":"Long Tan Le, Tung-Anh Nguyen, Tuan-Dung Nguyen, Nguyen H. Tran, Nguyen Binh Truong, Phuong L. Vo, Bui Thanh Hung, Tuan Anh Le","doi":"10.1007/s11036-024-02316-w","DOIUrl":null,"url":null,"abstract":"<p>Federated Learning (FL) revolutionizes data processing in mobile networks by enabling collaborative learning without data exchange. This not only reduces latency and enhances computational efficiency but also enables the system to adapt, learn and optimize the performance from the user’s context in real-time. Nevertheless, FL faces challenges in training and generalization due to statistical heterogeneity, stemming from the diverse data nature across varying user contexts. To address these challenges, we propose <span>\\(\\textsf {WAFL}\\)</span>, a robust FL framework grounded in Wasserstein distributionally robust optimization, aimed at enhancing model generalization against all adversarial distributions within a predefined Wasserstein ambiguity set. We approach <span>\\(\\textsf {WAFL}\\)</span> by formulating it as an empirical surrogate risk minimization problem, which is then solved using a novel federated algorithm. Experimental results demonstrate that <span>\\(\\textsf {WAFL}\\)</span> outperforms other robust FL baselines in non-i.i.d settings, showcasing superior generalization and robustness to significant distribution shifts.</p>","PeriodicalId":501103,"journal":{"name":"Mobile Networks and Applications","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11036-024-02316-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) revolutionizes data processing in mobile networks by enabling collaborative learning without data exchange. This not only reduces latency and enhances computational efficiency but also enables the system to adapt, learn and optimize the performance from the user’s context in real-time. Nevertheless, FL faces challenges in training and generalization due to statistical heterogeneity, stemming from the diverse data nature across varying user contexts. To address these challenges, we propose \(\textsf {WAFL}\), a robust FL framework grounded in Wasserstein distributionally robust optimization, aimed at enhancing model generalization against all adversarial distributions within a predefined Wasserstein ambiguity set. We approach \(\textsf {WAFL}\) by formulating it as an empirical surrogate risk minimization problem, which is then solved using a novel federated algorithm. Experimental results demonstrate that \(\textsf {WAFL}\) outperforms other robust FL baselines in non-i.i.d settings, showcasing superior generalization and robustness to significant distribution shifts.

Abstract Image

移动边缘网络的分布式稳健联合学习
联合学习(FL)通过实现无需数据交换的协作学习,彻底改变了移动网络中的数据处理方式。这不仅减少了延迟,提高了计算效率,还使系统能够实时适应、学习和优化用户环境的性能。然而,FL 在训练和泛化方面面临着挑战,原因是不同用户背景下的数据性质各不相同,导致统计异质性。为了应对这些挑战,我们提出了一种基于 Wasserstein 分布鲁棒优化的鲁棒 FL 框架,旨在增强模型泛化能力,以应对预定义的 Wasserstein 模糊集内的所有对抗分布。我们的方法是将\(\textsf {WAFL}\)表述为一个经验代用风险最小化问题,然后使用一种新颖的联合算法来解决这个问题。实验结果表明,在非 i.i.d 设置中,\(textsf {WAFL}\) 优于其他稳健 FL 基线,展示了卓越的泛化能力和对重大分布变化的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信