{"title":"Empirical Bayes Poisson matrix completion","authors":"Xiao Li , Takeru Matsuda , Fumiyasu Komaki","doi":"10.1016/j.csda.2024.107976","DOIUrl":null,"url":null,"abstract":"<div><p>An empirical Bayes method for the Poisson matrix denoising and completion problems is proposed, and a corresponding algorithm called EBPM (Empirical Bayes Poisson Matrix) is developed. This approach is motivated by the non-central singular value shrinkage prior, which was used for the estimation of the mean matrix parameter of a matrix-variate normal distribution. Numerical experiments show that the EBPM algorithm outperforms the common nuclear norm penalized method in both matrix denoising and completion. The EBPM algorithm is highly efficient and does not require heuristic parameter tuning, as opposed to the nuclear norm penalized method, in which the regularization parameter should be selected. The EBPM algorithm also performs better than others in real-data applications.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000604/pdfft?md5=1823ebfe249fd22a2c430281b6468d2f&pid=1-s2.0-S0167947324000604-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000604","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
An empirical Bayes method for the Poisson matrix denoising and completion problems is proposed, and a corresponding algorithm called EBPM (Empirical Bayes Poisson Matrix) is developed. This approach is motivated by the non-central singular value shrinkage prior, which was used for the estimation of the mean matrix parameter of a matrix-variate normal distribution. Numerical experiments show that the EBPM algorithm outperforms the common nuclear norm penalized method in both matrix denoising and completion. The EBPM algorithm is highly efficient and does not require heuristic parameter tuning, as opposed to the nuclear norm penalized method, in which the regularization parameter should be selected. The EBPM algorithm also performs better than others in real-data applications.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]