IDENTIFYING DIFFUSION CONCENTRATION AND SOURCE TERM FOR ANOMALOUS DIFFUSION EQUATION

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Asim Ilyas, Salman A. Malik, Kamran Suhaib
{"title":"IDENTIFYING DIFFUSION CONCENTRATION AND SOURCE TERM FOR ANOMALOUS DIFFUSION EQUATION","authors":"Asim Ilyas,&nbsp;Salman A. Malik,&nbsp;Kamran Suhaib","doi":"10.1016/S0034-4877(24)00023-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an inverse problem for diffusion equation involving fractional Laplacian operator in space and Hilfer fractional derivatives in time with Dirichlet zero boundary conditions. The inverse problem is to recover time-dependent source term and diffusion concentration with an integral type over-determination condition. We discuss the analytical solution of the inverse problem and prove the existence and uniqueness of the analytical solution. Some special cases and examples for the considered inverse problem are provided.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"93 2","pages":"Pages 145-163"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000235","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an inverse problem for diffusion equation involving fractional Laplacian operator in space and Hilfer fractional derivatives in time with Dirichlet zero boundary conditions. The inverse problem is to recover time-dependent source term and diffusion concentration with an integral type over-determination condition. We discuss the analytical solution of the inverse problem and prove the existence and uniqueness of the analytical solution. Some special cases and examples for the considered inverse problem are provided.

确定异常扩散方程的扩散浓度和源项
我们考虑的是扩散方程的逆问题,其中涉及空间分数拉普拉奇算子和时间希尔费分数导数,以及迪里希特零边界条件。逆问题是恢复与时间相关的源项和扩散浓度,并附带积分型超定条件。我们讨论了逆问题的解析解,并证明了解析解的存在性和唯一性。我们还为所考虑的逆问题提供了一些特例和示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信