{"title":"On the equivalence between Value-at-Risk- and Expected Shortfall-based risk measures in non-concave optimization","authors":"An Chen , Mitja Stadje , Fangyuan Zhang","doi":"10.1016/j.insmatheco.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>We study a non-concave optimization problem in which an insurance company maximizes the expected utility of the <em>surplus</em> under a risk-based regulatory constraint. The non-concavity does not stem from the utility function, but from non-linear functions related to the terminal wealth characterizing the surplus. For this problem, we consider four different prevalent risk constraints (Expected Shortfall, Expected Discounted Shortfall, Value-at-Risk, and Average Value-at-Risk), and investigate their effects on the optimal solution. Our main contributions are in obtaining an analytical solution under each of the four risk constraints in the form of the optimal terminal wealth. We show that the four risk constraints lead to the <em>same</em> optimal solution, which differs from previous conclusions obtained from the corresponding concave optimization problem under a risk constraint. Compared with the benchmark unconstrained utility maximization problem, all the four risk constraints effectively and equivalently reduce the set of zero terminal wealth, but do not fully eliminate this set, indicating the success and failure of the respective financial regulations.<span><sup>1</sup></span></p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"117 ","pages":"Pages 114-129"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167668724000520/pdfft?md5=311f70bde36992b1118d5727e1d3b491&pid=1-s2.0-S0167668724000520-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000520","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a non-concave optimization problem in which an insurance company maximizes the expected utility of the surplus under a risk-based regulatory constraint. The non-concavity does not stem from the utility function, but from non-linear functions related to the terminal wealth characterizing the surplus. For this problem, we consider four different prevalent risk constraints (Expected Shortfall, Expected Discounted Shortfall, Value-at-Risk, and Average Value-at-Risk), and investigate their effects on the optimal solution. Our main contributions are in obtaining an analytical solution under each of the four risk constraints in the form of the optimal terminal wealth. We show that the four risk constraints lead to the same optimal solution, which differs from previous conclusions obtained from the corresponding concave optimization problem under a risk constraint. Compared with the benchmark unconstrained utility maximization problem, all the four risk constraints effectively and equivalently reduce the set of zero terminal wealth, but do not fully eliminate this set, indicating the success and failure of the respective financial regulations.1
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.