Lan Li, Limin Ye, Yinying Cui, Yueting Wu, Ling Shui, Zheng Zong, Zhao Nie
{"title":"USP31 Activates the Wnt/β-catenin Signaling Pathway and Promotes Gastric Cancer Cell Proliferation, Invasion and Migration.","authors":"Lan Li, Limin Ye, Yinying Cui, Yueting Wu, Ling Shui, Zheng Zong, Zhao Nie","doi":"10.2174/0115748928297343240425055552","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer (GC) has a poor prognosis because it is highly aggressive, yet there are currently few effective therapies available. Although protein ubiquitination has been shown to play a complex role in the development of gastric cancer, to date, no efficient ubiquitinating enzymes have been identified as treatment targets for GC.</p><p><strong>Methods: </strong>The TCGA database was used for bioinformatic investigation of ubiquitin-specific protease 31 (USP31) expression in GC, and experimental techniques, including Western blotting, qRT-PCR, and immunohistochemistry, were used to confirm the findings. We also analyzed the relationship between USP31 expression and clinical prognosis in patients with GC. We further investigated the effects of USP31 on the proliferation, invasion, migration, and glycolysis of GC cells in vitro and in vivo by using colony formation, CCK-8 assays, Transwell chamber assays, cell scratch assays, and cell-derived xenograft. Furthermore, we examined the molecular processes by which USP31 influences the biological development of GC.</p><p><strong>Results: </strong>Patients with high USP31 expression have a poor prognosis because USP31 is abundantly expressed in GC. Therefore, USP31 reduces the level of ubiquitination of the Wnt/β-catenin pathway by binding to β-catenin, thereby activating glycolysis, which ultimately promotes GC proliferation and aggressive metastasis.</p><p><strong>Conclusion: </strong>USP31 inhibits ubiquitination of β-catenin by binding to it, stimulates the Wnt/β-- catenin pathway, activates glycolysis, and accelerates the biology of GCs, which are all demonstrated in this work.</p>","PeriodicalId":94186,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-cancer drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115748928297343240425055552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gastric cancer (GC) has a poor prognosis because it is highly aggressive, yet there are currently few effective therapies available. Although protein ubiquitination has been shown to play a complex role in the development of gastric cancer, to date, no efficient ubiquitinating enzymes have been identified as treatment targets for GC.
Methods: The TCGA database was used for bioinformatic investigation of ubiquitin-specific protease 31 (USP31) expression in GC, and experimental techniques, including Western blotting, qRT-PCR, and immunohistochemistry, were used to confirm the findings. We also analyzed the relationship between USP31 expression and clinical prognosis in patients with GC. We further investigated the effects of USP31 on the proliferation, invasion, migration, and glycolysis of GC cells in vitro and in vivo by using colony formation, CCK-8 assays, Transwell chamber assays, cell scratch assays, and cell-derived xenograft. Furthermore, we examined the molecular processes by which USP31 influences the biological development of GC.
Results: Patients with high USP31 expression have a poor prognosis because USP31 is abundantly expressed in GC. Therefore, USP31 reduces the level of ubiquitination of the Wnt/β-catenin pathway by binding to β-catenin, thereby activating glycolysis, which ultimately promotes GC proliferation and aggressive metastasis.
Conclusion: USP31 inhibits ubiquitination of β-catenin by binding to it, stimulates the Wnt/β-- catenin pathway, activates glycolysis, and accelerates the biology of GCs, which are all demonstrated in this work.