Predicting underwater acoustic transmission loss in the SOFAR channel from ray trajectories via deep learning.

IF 1.2 Q3 ACOUSTICS
Haitao Wang, Shiwei Peng, Qunyi He, Xiangyang Zeng
{"title":"Predicting underwater acoustic transmission loss in the SOFAR channel from ray trajectories via deep learning.","authors":"Haitao Wang, Shiwei Peng, Qunyi He, Xiangyang Zeng","doi":"10.1121/10.0025976","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0025976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.

通过深度学习从射线轨迹预测 SOFAR 信道中的水下声波传输损耗。
预测 SOFAR 信道中的声波传输损耗面临着各种挑战,例如传统方法中过于复杂的算法和计算密集型计算。为了应对这些挑战,本文提出了一种基于深度学习的水下声波传输损耗预测方法。通过适当训练 U 网型卷积神经网络,该方法可提供射线轨迹与问题域传输损耗之间的精确映射。在具有 Munk 声速剖面的 SOFAR 信道中进行了验证。结果表明,该方法具有作为快速预测模型的潜力,同时不会牺牲精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信