{"title":"Predicting underwater acoustic transmission loss in the SOFAR channel from ray trajectories via deep learning.","authors":"Haitao Wang, Shiwei Peng, Qunyi He, Xiangyang Zeng","doi":"10.1121/10.0025976","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0025976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.