{"title":"Open source approaches for pediatric global health technologies.","authors":"Ryan C L Brewster, Andrew Wu, Ryan W Carroll","doi":"10.1080/03091902.2024.2343682","DOIUrl":null,"url":null,"abstract":"<p><p>Access to medical technologies is a critical component of universal access to care; however, the advancement of technologies for children has historically lagged behind those for adults. The small market size, anatomic and physiologic variability, and legal and ethical implications pose unique barriers to developing and commercialising paediatric biomedical innovations. These challenges are magnified in low-resource settings (LRS), which often lack appropriate regulatory oversight, support for service contracts, and supply chain capacity. The COVID-19 pandemic exposed shortcomings in the traditional industry model for medical technologies, while also catalysing open-source approaches to technology development and dissemination. Open-source pathways - where products are freely licenced to be distributed and modified - addressed key shortages in critical equipment. Relatedly, we argue that open-source approaches can accelerate paediatric global health technology development. Open-source approaches can be tailored to clinical challenges independent of economic factors, embrace low-cost manufacturing techniques, and can be highly customisable. Furthermore, diverse stakeholders, including families and patients, are empowered to participate in collaborative communities of practice. How to regulate the development, manufacture, and distribution of open-source technologies remains an ongoing area of exploration. The need for democratised innovation must be carefully balanced against the imperatives of safety and quality for paediatric-specific solutions. This can be achieved, in part, through close coordination between national regulatory agencies and decentralised networks where products can be peer-reviewed and tested. Altogether, there is significant potential for open source to advance more equitable and sustainable medical innovations for all children.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2343682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Access to medical technologies is a critical component of universal access to care; however, the advancement of technologies for children has historically lagged behind those for adults. The small market size, anatomic and physiologic variability, and legal and ethical implications pose unique barriers to developing and commercialising paediatric biomedical innovations. These challenges are magnified in low-resource settings (LRS), which often lack appropriate regulatory oversight, support for service contracts, and supply chain capacity. The COVID-19 pandemic exposed shortcomings in the traditional industry model for medical technologies, while also catalysing open-source approaches to technology development and dissemination. Open-source pathways - where products are freely licenced to be distributed and modified - addressed key shortages in critical equipment. Relatedly, we argue that open-source approaches can accelerate paediatric global health technology development. Open-source approaches can be tailored to clinical challenges independent of economic factors, embrace low-cost manufacturing techniques, and can be highly customisable. Furthermore, diverse stakeholders, including families and patients, are empowered to participate in collaborative communities of practice. How to regulate the development, manufacture, and distribution of open-source technologies remains an ongoing area of exploration. The need for democratised innovation must be carefully balanced against the imperatives of safety and quality for paediatric-specific solutions. This can be achieved, in part, through close coordination between national regulatory agencies and decentralised networks where products can be peer-reviewed and tested. Altogether, there is significant potential for open source to advance more equitable and sustainable medical innovations for all children.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.