Anomalous Behavior Detection in Trajectory Data of Older Drivers.

Seyedeh Gol Ara Ghoreishi, Sonia Moshfeghi, Muhammad Tanveer Jan, Joshua Conniff, KwangSoo Yang, Jinwoo Jang, Borko Furht, Ruth Tappen, David Newman, Monica Rosselli, Jiannan Zhai
{"title":"Anomalous Behavior Detection in Trajectory Data of Older Drivers.","authors":"Seyedeh Gol Ara Ghoreishi, Sonia Moshfeghi, Muhammad Tanveer Jan, Joshua Conniff, KwangSoo Yang, Jinwoo Jang, Borko Furht, Ruth Tappen, David Newman, Monica Rosselli, Jiannan Zhai","doi":"10.1109/HONET59747.2023.10374878","DOIUrl":null,"url":null,"abstract":"<p><p>Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hard-brakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors.</p>","PeriodicalId":518005,"journal":{"name":"2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)","volume":"2023 ","pages":"146-151"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HONET59747.2023.10374878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hard-brakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors.

从老年驾驶员的轨迹数据中发现异常行为。
给定一个道路网络和一组轨迹数据,异常行为检测(ABD)问题就是要找出在行驶中出现明显方向偏离、急刹车和加速的驾驶员。ABD 问题在许多社会应用中都很重要,包括轻度认知障碍(MCI)检测和为老年驾驶员提供安全路线建议。由于时间上详细的轨迹数据集规模庞大,ABD 问题在计算上极具挑战性。在本文中,我们提出了一种边缘属性矩阵(Edge-Attributed Matrix),它可以表示时间细节轨迹数据集的关键属性,并能识别异常驾驶行为。使用真实世界数据集进行的实验证明,我们的方法可以识别异常驾驶行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信