{"title":"Galactosamine and mannosamine are integral parts of bacterial and fungal extracellular polymeric substances.","authors":"Rebeca Leme Oliva, Carla Vogt, Tábata Aline Bublitz, Tessa Camenzind, Jens Dyckmans, Rainer Georg Joergensen","doi":"10.1093/ismeco/ycae038","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular polymeric substances (EPS) are produced by microorganisms and interact to form a complex matrix called biofilm. In soils, EPS are important contributors to the microbial necromass and, thus, to soil organic carbon (SOC). Amino sugars (AS) are used as indicators for microbial necromass in soil, although the origin of galactosamine and mannosamine is largely unknown. However, indications exist that they are part of EPS. In this study, two bacteria and two fungi were grown in starch medium either with or without a quartz matrix to induce EPS production. Each culture was separated in two fractions: one that directly underwent AS extraction (containing AS from both biomass and EPS), and another that first had EPS extracted, followed then by AS determination (exclusively containing AS from EPS). We did not observe a general effect of the quartz matrix neither of microbial type on AS production. The quantified amounts of galactosamine and mannosamine in the EPS fraction represented on average 100% of the total amounts of these two AS quantified in cell cultures, revealing they are integral parts of the biofilm. In contrast, muramic acid and glucosamine were also quantified in the EPS, but with much lower contribution rates to total AS production, of 18% and 33%, respectively, indicating they are not necessarily part of EPS. Our results allow a meaningful ecological interpretation of mannosamine and galactosamine data in the future as indicators of microbial EPS, and also attract interest of future studies to investigate the role of EPS to SOC and its dynamics.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"4 1","pages":"ycae038"},"PeriodicalIF":5.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014887/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular polymeric substances (EPS) are produced by microorganisms and interact to form a complex matrix called biofilm. In soils, EPS are important contributors to the microbial necromass and, thus, to soil organic carbon (SOC). Amino sugars (AS) are used as indicators for microbial necromass in soil, although the origin of galactosamine and mannosamine is largely unknown. However, indications exist that they are part of EPS. In this study, two bacteria and two fungi were grown in starch medium either with or without a quartz matrix to induce EPS production. Each culture was separated in two fractions: one that directly underwent AS extraction (containing AS from both biomass and EPS), and another that first had EPS extracted, followed then by AS determination (exclusively containing AS from EPS). We did not observe a general effect of the quartz matrix neither of microbial type on AS production. The quantified amounts of galactosamine and mannosamine in the EPS fraction represented on average 100% of the total amounts of these two AS quantified in cell cultures, revealing they are integral parts of the biofilm. In contrast, muramic acid and glucosamine were also quantified in the EPS, but with much lower contribution rates to total AS production, of 18% and 33%, respectively, indicating they are not necessarily part of EPS. Our results allow a meaningful ecological interpretation of mannosamine and galactosamine data in the future as indicators of microbial EPS, and also attract interest of future studies to investigate the role of EPS to SOC and its dynamics.