{"title":"Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding.","authors":"Naoki Egami, Eric J Tchetgen Tchetgen","doi":"10.1093/jrsssb/qkad132","DOIUrl":null,"url":null,"abstract":"<p><p>Identification and estimation of causal peer effects are challenging in observational studies for two reasons. The first is the identification challenge due to unmeasured network confounding, for example, homophily bias and contextual confounding. The second is network dependence of observations. We establish a framework that leverages a pair of negative control outcome and exposure variables (double negative controls) to non-parametrically identify causal peer effects in the presence of unmeasured network confounding. We then propose a generalised method of moments estimator and establish its consistency and asymptotic normality under an assumption about <i>ψ</i>-network dependence. Finally, we provide a consistent variance estimator.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"86 2","pages":"487-511"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad132","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Identification and estimation of causal peer effects are challenging in observational studies for two reasons. The first is the identification challenge due to unmeasured network confounding, for example, homophily bias and contextual confounding. The second is network dependence of observations. We establish a framework that leverages a pair of negative control outcome and exposure variables (double negative controls) to non-parametrically identify causal peer effects in the presence of unmeasured network confounding. We then propose a generalised method of moments estimator and establish its consistency and asymptotic normality under an assumption about ψ-network dependence. Finally, we provide a consistent variance estimator.
期刊介绍:
Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.