Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2023-12-15 eCollection Date: 2024-04-01 DOI:10.1093/jrsssb/qkad132
Naoki Egami, Eric J Tchetgen Tchetgen
{"title":"Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding.","authors":"Naoki Egami, Eric J Tchetgen Tchetgen","doi":"10.1093/jrsssb/qkad132","DOIUrl":null,"url":null,"abstract":"<p><p>Identification and estimation of causal peer effects are challenging in observational studies for two reasons. The first is the identification challenge due to unmeasured network confounding, for example, homophily bias and contextual confounding. The second is network dependence of observations. We establish a framework that leverages a pair of negative control outcome and exposure variables (double negative controls) to non-parametrically identify causal peer effects in the presence of unmeasured network confounding. We then propose a generalised method of moments estimator and establish its consistency and asymptotic normality under an assumption about <i>ψ</i>-network dependence. Finally, we provide a consistent variance estimator.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad132","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Identification and estimation of causal peer effects are challenging in observational studies for two reasons. The first is the identification challenge due to unmeasured network confounding, for example, homophily bias and contextual confounding. The second is network dependence of observations. We establish a framework that leverages a pair of negative control outcome and exposure variables (double negative controls) to non-parametrically identify causal peer effects in the presence of unmeasured network confounding. We then propose a generalised method of moments estimator and establish its consistency and asymptotic normality under an assumption about ψ-network dependence. Finally, we provide a consistent variance estimator.

利用双重负向控制对未测量的网络干扰进行因果同伴效应的识别和估计。
在观察性研究中,因果同伴效应的识别和估计具有挑战性,原因有二。首先是由于未测量的网络混杂因素(如同质性偏差和背景混杂因素)造成的识别挑战。其次是观察结果的网络依赖性。我们建立了一个框架,利用一对负控制结果和暴露变量(双负控制),在存在未测量网络混杂的情况下,非参数地识别因果同伴效应。然后,我们提出了一种广义矩估计方法,并在ψ网络依赖性假设下确定了其一致性和渐近正态性。最后,我们提供了一个一致的方差估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信