Yang Yang, Conghui Zhao, Zi Yang, Conglin Du, Zhichao Chang, Xin Wen, Xiujuan Zhang, Yi Liu, Liang Hu, Zhenhua Gao
{"title":"Myeloid-derived growth factor ameliorates dextran sodium sulfate-induced colitis by regulating macrophage polarization.","authors":"Yang Yang, Conghui Zhao, Zi Yang, Conglin Du, Zhichao Chang, Xin Wen, Xiujuan Zhang, Yi Liu, Liang Hu, Zhenhua Gao","doi":"10.1007/s00109-024-02447-3","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is characterized by inflammatory conditions in the gastrointestinal tract. According to reports, IBD prevalence is increasing globally, with heavy economic and physical burdens. Current IBD clinical treatment is limited to pharmacological methods; therefore, new strategies are needed. Myeloid-derived growth factor (MYDGF) secreted by bone marrow-derived mononuclear macrophages has beneficial effects in multiple inflammatory diseases. To this end, the present study aimed to establish an experimental IBD mouse model using dextran sulfate sodium in drinking water. MYDGF significantly alleviated DSS-induced colitis, suppressed lymphocyte infiltration, restored epithelial integrity in mice, and decreased apoptosis in the colon tissue. Moreover, the number of M1 macrophages was decreased and that of M2 macrophages was increased by the action of MYDGF. In MYDGF-treated mice, the NF-κB and MAPK pathways were partially inhibited. Our findings indicate that MYDGF could mitigate DSS-induced mice IBD by reducing inflammation and restoring epithelial integrity through regulation of intestinal macrophage polarization via NF-κB and MAPK pathway inhibition. KEY MESSAGES: MYDGF alleviated DSS-induced acute colitis. MYDGF maintains colon epithelial barrier integrity and relieves inflammation. MYDGF regulates colon macrophage polarization. MYDGF partially inhibited the activation of NF-κB and MAPK pathway.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"875-886"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-024-02447-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory bowel disease (IBD) is characterized by inflammatory conditions in the gastrointestinal tract. According to reports, IBD prevalence is increasing globally, with heavy economic and physical burdens. Current IBD clinical treatment is limited to pharmacological methods; therefore, new strategies are needed. Myeloid-derived growth factor (MYDGF) secreted by bone marrow-derived mononuclear macrophages has beneficial effects in multiple inflammatory diseases. To this end, the present study aimed to establish an experimental IBD mouse model using dextran sulfate sodium in drinking water. MYDGF significantly alleviated DSS-induced colitis, suppressed lymphocyte infiltration, restored epithelial integrity in mice, and decreased apoptosis in the colon tissue. Moreover, the number of M1 macrophages was decreased and that of M2 macrophages was increased by the action of MYDGF. In MYDGF-treated mice, the NF-κB and MAPK pathways were partially inhibited. Our findings indicate that MYDGF could mitigate DSS-induced mice IBD by reducing inflammation and restoring epithelial integrity through regulation of intestinal macrophage polarization via NF-κB and MAPK pathway inhibition. KEY MESSAGES: MYDGF alleviated DSS-induced acute colitis. MYDGF maintains colon epithelial barrier integrity and relieves inflammation. MYDGF regulates colon macrophage polarization. MYDGF partially inhibited the activation of NF-κB and MAPK pathway.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.