Ahrum Son, Woojin Kim, Wonseok Lee, Jongham Park, Hyunsoo Kim
{"title":"Applicability of selected reaction monitoring for precise screening tests.","authors":"Ahrum Son, Woojin Kim, Wonseok Lee, Jongham Park, Hyunsoo Kim","doi":"10.1080/14789450.2024.2350975","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The proactive identification of diseases through screening tests has long been endorsed as a means to preempt symptomatic onset. However, such screening endeavors are fraught with complications, such as diagnostic inaccuracies, procedural risks, and patient unease during examinations. These challenges are amplified when screenings for multiple diseases are administered concurrently. Selected Reaction Monitoring (SRM) offers a unique advantage, allowing for the high-throughput quantification of hundreds of analytes with minimal interferences.</p><p><strong>Areas covered: </strong>Our research posits that SRM-based assays, traditionally tailored for single-disease biomarker profiling, can be repurposed for multi-disease screening. This innovative approach has the potential to substantially alleviate time, labor, and cost demands on healthcare systems and patients alike. Nonetheless, there are formidable methodological hurdles to overcome. These include difficulties in detecting low-abundance proteins and the risk of model overfitting due to the multiple functionalities of single proteins across different disease spectrums - issues especially pertinent in blood-based assays where detection sensitivity is constrained. As we move forward, technological strides in sample preparation, online extraction, throughput, and automation are expected to ameliorate these limitations.</p><p><strong>Expert opinion: </strong>The maturation of mass spectrometry's integration into clinical laboratories appears imminent, positioning it as an invaluable asset for delivering highly sensitive, reproducible, and precise diagnostic results.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"237-246"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2024.2350975","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The proactive identification of diseases through screening tests has long been endorsed as a means to preempt symptomatic onset. However, such screening endeavors are fraught with complications, such as diagnostic inaccuracies, procedural risks, and patient unease during examinations. These challenges are amplified when screenings for multiple diseases are administered concurrently. Selected Reaction Monitoring (SRM) offers a unique advantage, allowing for the high-throughput quantification of hundreds of analytes with minimal interferences.
Areas covered: Our research posits that SRM-based assays, traditionally tailored for single-disease biomarker profiling, can be repurposed for multi-disease screening. This innovative approach has the potential to substantially alleviate time, labor, and cost demands on healthcare systems and patients alike. Nonetheless, there are formidable methodological hurdles to overcome. These include difficulties in detecting low-abundance proteins and the risk of model overfitting due to the multiple functionalities of single proteins across different disease spectrums - issues especially pertinent in blood-based assays where detection sensitivity is constrained. As we move forward, technological strides in sample preparation, online extraction, throughput, and automation are expected to ameliorate these limitations.
Expert opinion: The maturation of mass spectrometry's integration into clinical laboratories appears imminent, positioning it as an invaluable asset for delivering highly sensitive, reproducible, and precise diagnostic results.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.