Association Between Neuroinflammation and Parkinson's Disease: A Comprehensive Mendelian Randomization Study.

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2024-12-01 Epub Date: 2024-05-06 DOI:10.1007/s12035-024-04197-2
YiNi Wang, XinYu Shi, YaPing Yin, Fei Yang, YiNan Zhang, Xin He, Da Wen, Bai-Xiang Li, Kun Ma
{"title":"Association Between Neuroinflammation and Parkinson's Disease: A Comprehensive Mendelian Randomization Study.","authors":"YiNi Wang, XinYu Shi, YaPing Yin, Fei Yang, YiNan Zhang, Xin He, Da Wen, Bai-Xiang Li, Kun Ma","doi":"10.1007/s12035-024-04197-2","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the study is to determine the causal relationship and potential mechanisms between Parkinson's disease (PD) and neuroinflammatory and neurotoxic mediators. We conducted two-sample Mendelian randomization (2SMR) study and multivariable Mendelian randomization (MVMR) analysis to investigate the causality between PD and neuroinflammatory and neurotoxic mediators. The mediation analysis with MR was also conducted to determine the potential mediating effect of neuroinflammatory and neurotoxic mediators between asthma and PD. Genetically predicted levels of nine neuroinflammation were associated with changes in PD risk. The associations of PD with CCL24, galectin-3 levels, haptoglobin, and Holo-Transcobalamin-2 remained significant in multivariable analyses. The mediation analysis with MR revealed that asthma affects PD through CCL24 and galectin-3. The results showed neuroinflammation could affect the pathogenesis of PD. In the combined analysis of these nine variables, CCL24, galectin-3 levels, HP, and Holo-Transcobalamin-2 alone were found to be significant. Asthma plays an intermediary role through CCL24 and galectin-3 levels.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10216-10226"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04197-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the study is to determine the causal relationship and potential mechanisms between Parkinson's disease (PD) and neuroinflammatory and neurotoxic mediators. We conducted two-sample Mendelian randomization (2SMR) study and multivariable Mendelian randomization (MVMR) analysis to investigate the causality between PD and neuroinflammatory and neurotoxic mediators. The mediation analysis with MR was also conducted to determine the potential mediating effect of neuroinflammatory and neurotoxic mediators between asthma and PD. Genetically predicted levels of nine neuroinflammation were associated with changes in PD risk. The associations of PD with CCL24, galectin-3 levels, haptoglobin, and Holo-Transcobalamin-2 remained significant in multivariable analyses. The mediation analysis with MR revealed that asthma affects PD through CCL24 and galectin-3. The results showed neuroinflammation could affect the pathogenesis of PD. In the combined analysis of these nine variables, CCL24, galectin-3 levels, HP, and Holo-Transcobalamin-2 alone were found to be significant. Asthma plays an intermediary role through CCL24 and galectin-3 levels.

Abstract Image

神经炎症与帕金森病之间的关系:孟德尔随机综合研究
本研究旨在确定帕金森病(PD)与神经炎症和神经毒性介质之间的因果关系和潜在机制。我们进行了双样本孟德尔随机化(2SMR)研究和多变量孟德尔随机化(MVMR)分析,以研究帕金森病与神经炎症和神经毒性介质之间的因果关系。此外,还进行了MR中介分析,以确定神经炎症和神经毒性介质在哮喘与痹症之间的潜在中介效应。基因预测的九种神经炎症水平与肢端麻痹症风险的变化相关。在多变量分析中,肢端麻痹症与CCL24、galectin-3水平、血红蛋白和Holo-Transcobalamin-2的关系仍然显著。利用MR进行的中介分析表明,哮喘通过CCL24和galectin-3影响肢端麻痹症。结果表明,神经炎症可能会影响帕金森病的发病机制。在对这九个变量的综合分析中,发现CCL24、galectin-3水平、HP和Holo-Transcobalamin-2单独具有显著性。哮喘通过CCL24和galectin-3水平发挥中介作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信