Latent mutations in the ancestries of alleles under selection

IF 1.2 4区 生物学 Q4 ECOLOGY
Wai-Tong (Louis) Fan , John Wakeley
{"title":"Latent mutations in the ancestries of alleles under selection","authors":"Wai-Tong (Louis) Fan ,&nbsp;John Wakeley","doi":"10.1016/j.tpb.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a single genetic locus with two alleles <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in a large haploid population. The locus is subject to selection and two-way, or recurrent, mutation. Assuming the allele frequencies follow a Wright–Fisher diffusion and have reached stationarity, we describe the asymptotic behaviors of the conditional gene genealogy and the latent mutations of a sample with known allele counts, when the count <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of allele <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is fixed, and when either or both the sample size <span><math><mi>n</mi></math></span> and the selection strength <span><math><mrow><mo>|</mo><mi>α</mi><mo>|</mo></mrow></math></span> tend to infinity. Our study extends previous work under neutrality to the case of non-neutral rare alleles, asserting that when selection is not too strong relative to the sample size, even if it is strongly positive or strongly negative in the usual sense (<span><math><mrow><mi>α</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span> or <span><math><mrow><mi>α</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span>), the number of latent mutations of the <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> copies of allele <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> follows the same distribution as the number of alleles in the Ewens sampling formula. On the other hand, very strong positive selection relative to the sample size leads to neutral gene genealogies with a single ancient latent mutation. We also demonstrate robustness of our asymptotic results against changing population sizes, when one of <span><math><mrow><mo>|</mo><mi>α</mi><mo>|</mo></mrow></math></span> or <span><math><mi>n</mi></math></span> is large.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 1-20"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000418","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a single genetic locus with two alleles A1 and A2 in a large haploid population. The locus is subject to selection and two-way, or recurrent, mutation. Assuming the allele frequencies follow a Wright–Fisher diffusion and have reached stationarity, we describe the asymptotic behaviors of the conditional gene genealogy and the latent mutations of a sample with known allele counts, when the count n1 of allele A1 is fixed, and when either or both the sample size n and the selection strength |α| tend to infinity. Our study extends previous work under neutrality to the case of non-neutral rare alleles, asserting that when selection is not too strong relative to the sample size, even if it is strongly positive or strongly negative in the usual sense (α or α+), the number of latent mutations of the n1 copies of allele A1 follows the same distribution as the number of alleles in the Ewens sampling formula. On the other hand, very strong positive selection relative to the sample size leads to neutral gene genealogies with a single ancient latent mutation. We also demonstrate robustness of our asymptotic results against changing population sizes, when one of |α| or n is large.

选择等位基因祖先中的潜在突变。
我们考虑在一个大的单倍体群体中,一个基因位点有两个等位基因 A1 和 A2。该基因座受到选择和双向或循环突变的影响。假定等位基因频率遵循赖特-费舍扩散并达到静止状态,我们描述了当等位基因 A1 的数量 n1 固定,以及当样本量 n 和选择强度 |α| 都趋于无穷大时,已知等位基因数量的样本的条件系谱和潜在突变的渐近行为。我们的研究将之前在中性条件下的工作扩展到了非中性稀有等位基因的情况,断言当选择相对于样本量不太强时,即使是通常意义上的强正向选择或强负向选择(α→-∞或α→+∞),n1 份等位基因 A1 的潜伏突变数与等位基因数在 Ewens 抽样公式中的分布相同。另一方面,相对于样本量而言,非常强的正向选择会导致中性基因系谱中只有一个古老的潜伏突变。我们还证明了当 |α| 或 n 中的一个较大时,我们的渐近结果对种群规模变化的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信