Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms.

Computing in cardiology Pub Date : 2023-10-01 Epub Date: 2023-12-26 DOI:10.22489/cinc.2023.180
Antonio Mendoza, Mehdi Razavi, Joseph R Cavallaro
{"title":"Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms.","authors":"Antonio Mendoza, Mehdi Razavi, Joseph R Cavallaro","doi":"10.22489/cinc.2023.180","DOIUrl":null,"url":null,"abstract":"<p><p>Left Ventricular Assist Devices (LVADs) are increasingly used as long-term implantation therapy for advanced heart failure patients, where candidacy assessment is crucial for successful treatment and recovery. A Deep Learning system based on Electrocardiogram (ECG) diagnoses criteria to stratify candidacy is proposed, implementing multi-model processing, interpretability, and uncertainty estimation. The approach includes beat segmentation for single-lead classification, 12-lead analysis, and semantic segmentation, achieving state-of-the-art results on the classification evaluation of each model, with multilabel average AUC results of 0.9924, 0.9468, and 0.9956, respectively, presenting a novel approach for LVAD candidacy assessment, serving as an aid for decision-making.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Left Ventricular Assist Devices (LVADs) are increasingly used as long-term implantation therapy for advanced heart failure patients, where candidacy assessment is crucial for successful treatment and recovery. A Deep Learning system based on Electrocardiogram (ECG) diagnoses criteria to stratify candidacy is proposed, implementing multi-model processing, interpretability, and uncertainty estimation. The approach includes beat segmentation for single-lead classification, 12-lead analysis, and semantic segmentation, achieving state-of-the-art results on the classification evaluation of each model, with multilabel average AUC results of 0.9924, 0.9468, and 0.9956, respectively, presenting a novel approach for LVAD candidacy assessment, serving as an aid for decision-making.

从心电图评估左心室辅助装置候选者的深度学习系统。
左心室辅助装置(LVAD)越来越多地被用作晚期心力衰竭患者的长期植入疗法,其适用性评估对于成功治疗和康复至关重要。本文提出了一种基于心电图(ECG)诊断标准的深度学习系统,用于对候选者进行分层,该系统实现了多模型处理、可解释性和不确定性估计。该方法包括用于单导联分类的搏动分割、12 导联分析和语义分割,每个模型的分类评估结果都达到了最先进水平,多标签平均 AUC 结果分别为 0.9924、0.9468 和 0.9956,为 LVAD 候选评估提供了一种新方法,可作为决策辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信