Impact of light-emitting diodes on visual cortex layer 5 pyramidal neurons (V1-L5PNs)-A rodent study.
IF 1.8 3区 医学Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular VisionPub Date : 2024-02-20eCollection Date: 2024-01-01
Nagarajan Theruveethi
{"title":"Impact of light-emitting diodes on visual cortex layer 5 pyramidal neurons (V1-L5PNs)-A rodent study.","authors":"Nagarajan Theruveethi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Light-induced neural retinal insult leads to alterations in the visual cortex neurons. We examined light-induced neuronal alterations in the visual cortex layer 5 pyramidal neurons (V1-L5PNs) of adult male Wistar rats.</p><p><strong>Methods: </strong>A total of 24 rats were divided into the following groups (n=6 each): control (NC), blue (BL), white (WL), and yellow (YL). The exposure groups were subjected to light-emitting diodes (LED) exposure (450-500 lx) of differing wavelengths for 90 days (12:12 16 light-dark cycle). After LED exposure, the animals were sacrificed, and the brain tissues were removed and impregnated in freshly prepared Golgi-Cox stain for 21 days. Sholl's grading analysis was used to quantify the apical and basal dendritic branching points and intersections of the V1-L5PNs.</p><p><strong>Results: </strong>There was a significant difference in the number of apical branching points among all groups (p<0.001), with a particularly notable difference between the BL and WL groups (p<0.001). A post hoc test revealed that all exposure groups (BL, WL, and YL) had fewer apical branching points (p<0.001) on an average of 3.6 µm and a significant reduction in the dendritic intersections (p<0.001) compared to the number of branching points extending from layer Va (V1) neurons.</p><p><strong>Conclusions: </strong>Chronic and cumulative exposure to blue and white LEDs led to the pruning of V1-L5PNs, which might impair visual processing.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"30 ","pages":"67-73"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Light-induced neural retinal insult leads to alterations in the visual cortex neurons. We examined light-induced neuronal alterations in the visual cortex layer 5 pyramidal neurons (V1-L5PNs) of adult male Wistar rats.
Methods: A total of 24 rats were divided into the following groups (n=6 each): control (NC), blue (BL), white (WL), and yellow (YL). The exposure groups were subjected to light-emitting diodes (LED) exposure (450-500 lx) of differing wavelengths for 90 days (12:12 16 light-dark cycle). After LED exposure, the animals were sacrificed, and the brain tissues were removed and impregnated in freshly prepared Golgi-Cox stain for 21 days. Sholl's grading analysis was used to quantify the apical and basal dendritic branching points and intersections of the V1-L5PNs.
Results: There was a significant difference in the number of apical branching points among all groups (p<0.001), with a particularly notable difference between the BL and WL groups (p<0.001). A post hoc test revealed that all exposure groups (BL, WL, and YL) had fewer apical branching points (p<0.001) on an average of 3.6 µm and a significant reduction in the dendritic intersections (p<0.001) compared to the number of branching points extending from layer Va (V1) neurons.
Conclusions: Chronic and cumulative exposure to blue and white LEDs led to the pruning of V1-L5PNs, which might impair visual processing.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.