Impact of light-emitting diodes on visual cortex layer 5 pyramidal neurons (V1-L5PNs)-A rodent study.

IF 1.8 3区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Vision Pub Date : 2024-02-20 eCollection Date: 2024-01-01
Nagarajan Theruveethi
{"title":"Impact of light-emitting diodes on visual cortex layer 5 pyramidal neurons (V1-L5PNs)-A rodent study.","authors":"Nagarajan Theruveethi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Light-induced neural retinal insult leads to alterations in the visual cortex neurons. We examined light-induced neuronal alterations in the visual cortex layer 5 pyramidal neurons (V1-L5PNs) of adult male Wistar rats.</p><p><strong>Methods: </strong>A total of 24 rats were divided into the following groups (n=6 each): control (NC), blue (BL), white (WL), and yellow (YL). The exposure groups were subjected to light-emitting diodes (LED) exposure (450-500 lx) of differing wavelengths for 90 days (12:12 16 light-dark cycle). After LED exposure, the animals were sacrificed, and the brain tissues were removed and impregnated in freshly prepared Golgi-Cox stain for 21 days. Sholl's grading analysis was used to quantify the apical and basal dendritic branching points and intersections of the V1-L5PNs.</p><p><strong>Results: </strong>There was a significant difference in the number of apical branching points among all groups (p<0.001), with a particularly notable difference between the BL and WL groups (p<0.001). A post hoc test revealed that all exposure groups (BL, WL, and YL) had fewer apical branching points (p<0.001) on an average of 3.6 µm and a significant reduction in the dendritic intersections (p<0.001) compared to the number of branching points extending from layer Va (V1) neurons.</p><p><strong>Conclusions: </strong>Chronic and cumulative exposure to blue and white LEDs led to the pruning of V1-L5PNs, which might impair visual processing.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"30 ","pages":"67-73"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Light-induced neural retinal insult leads to alterations in the visual cortex neurons. We examined light-induced neuronal alterations in the visual cortex layer 5 pyramidal neurons (V1-L5PNs) of adult male Wistar rats.

Methods: A total of 24 rats were divided into the following groups (n=6 each): control (NC), blue (BL), white (WL), and yellow (YL). The exposure groups were subjected to light-emitting diodes (LED) exposure (450-500 lx) of differing wavelengths for 90 days (12:12 16 light-dark cycle). After LED exposure, the animals were sacrificed, and the brain tissues were removed and impregnated in freshly prepared Golgi-Cox stain for 21 days. Sholl's grading analysis was used to quantify the apical and basal dendritic branching points and intersections of the V1-L5PNs.

Results: There was a significant difference in the number of apical branching points among all groups (p<0.001), with a particularly notable difference between the BL and WL groups (p<0.001). A post hoc test revealed that all exposure groups (BL, WL, and YL) had fewer apical branching points (p<0.001) on an average of 3.6 µm and a significant reduction in the dendritic intersections (p<0.001) compared to the number of branching points extending from layer Va (V1) neurons.

Conclusions: Chronic and cumulative exposure to blue and white LEDs led to the pruning of V1-L5PNs, which might impair visual processing.

发光二极管对视觉皮层第 5 层锥体神经元(V1-L5PNs)的影响--啮齿动物研究。
目的:光诱导的神经视网膜损伤会导致视觉皮层神经元的改变。我们研究了光诱导的成年雄性 Wistar 大鼠视觉皮层第 5 层锥体神经元(V1-L5PNs)的神经元改变:将 24 只大鼠分为以下几组(每组 6 只):对照组(NC)、蓝色组(BL)、白色组(WL)和黄色组(YL)。暴露组接受不同波长的发光二极管(LED)照射(450-500 lx)90天(12:12 16光暗循环)。LED照射后,动物被处死,取出脑组织并浸泡在新鲜制备的Golgi-Cox染色剂中21天。采用 Sholl 分级分析法对 V1-L5PNs 的顶端和基底树突分支点及交叉点进行量化:结果:所有组的顶端分支点数量均有显著差异(p结论:长期和累积暴露于蓝光和白光环境会导致V1-L5PNs的顶端分支点数量增加:长期和累积暴露于蓝光和白光 LED 会导致 V1-L5PN 的修剪,这可能会损害视觉处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Vision
Molecular Vision 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
25
审稿时长
1 months
期刊介绍: Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical). Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints. For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信