{"title":"Population dynamics and games of variable size","authors":"Matheus Hansen , Fabio A.C.C. Chalub","doi":"10.1016/j.jtbi.2024.111842","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces the concept of Variable Size Game Theory (VSGT), in which the number of players in a game is a strategic decision made by the players themselves. We start by discussing the main examples in game theory: dominance, coexistence, and coordination. We show that the same set of pay-offs can result in coordination-like or coexistence-like games depending on the strategic decision of each player type. We also solve an inverse problem to find a <span><math><mi>d</mi></math></span>-player game that reproduces the same fixation pattern of the VSGT. In the sequel, we consider a game involving prosocial and antisocial players, i.e., individuals who tend to play with large groups and small groups, respectively. In this game, a certain task should be performed, that will benefit one of the participants at the expense of the other players. We show that individuals able to gather large groups to perform the task may prevail, even if this task is costly, providing a possible scenario for the evolution of eusociality. The next example shows that different strategies regarding game size may lead to spontaneous separation of different types, a possible scenario for speciation without physical separation (sympatric speciation). In the last example, we generalize to three types of populations from the previous analysis and study compartmental epidemic models: in particular, we recast the SIRS model into the VSGT framework: Susceptibles play 2-player games, while Infectious and Removed play a 1-player game. The SIRS epidemic model is then obtained as the replicator equation of the VSGT. We finish with possible applications of VSGT to be addressed in the future.</p></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"589 ","pages":"Article 111842"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324001231/pdfft?md5=94bde72745569b8492d12d7bc27d8c82&pid=1-s2.0-S0022519324001231-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001231","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces the concept of Variable Size Game Theory (VSGT), in which the number of players in a game is a strategic decision made by the players themselves. We start by discussing the main examples in game theory: dominance, coexistence, and coordination. We show that the same set of pay-offs can result in coordination-like or coexistence-like games depending on the strategic decision of each player type. We also solve an inverse problem to find a -player game that reproduces the same fixation pattern of the VSGT. In the sequel, we consider a game involving prosocial and antisocial players, i.e., individuals who tend to play with large groups and small groups, respectively. In this game, a certain task should be performed, that will benefit one of the participants at the expense of the other players. We show that individuals able to gather large groups to perform the task may prevail, even if this task is costly, providing a possible scenario for the evolution of eusociality. The next example shows that different strategies regarding game size may lead to spontaneous separation of different types, a possible scenario for speciation without physical separation (sympatric speciation). In the last example, we generalize to three types of populations from the previous analysis and study compartmental epidemic models: in particular, we recast the SIRS model into the VSGT framework: Susceptibles play 2-player games, while Infectious and Removed play a 1-player game. The SIRS epidemic model is then obtained as the replicator equation of the VSGT. We finish with possible applications of VSGT to be addressed in the future.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.