Prediction models for deep vein thrombosis after knee/hip arthroplasty: A systematic review and network meta-analysis.

IF 1.6 4区 医学
Qingqing Zeng, Zhuolan Li, Sijie Gui, Jingjing Wu, Caijuan Liu, Ting Wang, Dan Peng, Guqing Zeng
{"title":"Prediction models for deep vein thrombosis after knee/hip arthroplasty: A systematic review and network meta-analysis.","authors":"Qingqing Zeng, Zhuolan Li, Sijie Gui, Jingjing Wu, Caijuan Liu, Ting Wang, Dan Peng, Guqing Zeng","doi":"10.1177/10225536241249591","DOIUrl":null,"url":null,"abstract":"<p><p>Deep vein thrombosis (DVT) is one of the common complications after joint replacement, which seriously affects the quality of life of patients. We systematically searched nine databases, a total of eleven studies on prediction models to predict DVT after knee/hip arthroplasty were included, eight prediction models for DVT after knee/hip arthroplasty were chosen and compared. The results of network meta-analysis showed the XGBoost model (SUCRA 100.0%), LASSO (SUCRA 84.8%), ANN (SUCRA 72.1%), SVM (SUCRA 53.0%), ensemble model (SUCRA 40.8%), RF (SUCRA 25.6%), LR (SUCRA 21.8%), GBT (SUCRA 1.1%), and best prediction performance is XGB (SUCRA 100%). Results show that the XGBoost model has the best predictive performance. Our study provides suggestions and directions for future research on the DVT prediction model. In the future, well-designed studies are still needed to validate this model.</p>","PeriodicalId":16608,"journal":{"name":"Journal of Orthopaedic Surgery","volume":"32 2","pages":"10225536241249591"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10225536241249591","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep vein thrombosis (DVT) is one of the common complications after joint replacement, which seriously affects the quality of life of patients. We systematically searched nine databases, a total of eleven studies on prediction models to predict DVT after knee/hip arthroplasty were included, eight prediction models for DVT after knee/hip arthroplasty were chosen and compared. The results of network meta-analysis showed the XGBoost model (SUCRA 100.0%), LASSO (SUCRA 84.8%), ANN (SUCRA 72.1%), SVM (SUCRA 53.0%), ensemble model (SUCRA 40.8%), RF (SUCRA 25.6%), LR (SUCRA 21.8%), GBT (SUCRA 1.1%), and best prediction performance is XGB (SUCRA 100%). Results show that the XGBoost model has the best predictive performance. Our study provides suggestions and directions for future research on the DVT prediction model. In the future, well-designed studies are still needed to validate this model.

膝/髋关节置换术后深静脉血栓形成的预测模型:系统综述和网络荟萃分析。
深静脉血栓(DVT)是关节置换术后常见的并发症之一,严重影响患者的生活质量。我们系统检索了9个数据库,共纳入了11项关于膝/髋关节置换术后深静脉血栓预测模型的研究,选择并比较了8个膝/髋关节置换术后深静脉血栓预测模型。网络荟萃分析结果显示,XGBoost 模型(SUCRA 100.0%)、LASSO(SUCRA 84.8%)、ANN(SUCRA 72.1%)、SVM(SUCRA 53.0%)、集合模型(SUCRA 40.8%)、RF(SUCRA 25.6%)、LR(SUCRA 21.8%)、GBT(SUCRA 1.1%),预测性能最好的是 XGB(SUCRA 100%)。结果表明,XGBoost 模型的预测性能最好。我们的研究为深静脉血栓预测模型的未来研究提供了建议和方向。今后,仍需进行精心设计的研究来验证该模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
91
期刊介绍: Journal of Orthopaedic Surgery is an open access peer-reviewed journal publishing original reviews and research articles on all aspects of orthopaedic surgery. It is the official journal of the Asia Pacific Orthopaedic Association. The journal welcomes and will publish materials of a diverse nature, from basic science research to clinical trials and surgical techniques. The journal encourages contributions from all parts of the world, but special emphasis is given to research of particular relevance to the Asia Pacific region.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信