{"title":"Some tips and tricks for a Correlative Light Electron Microscopy workflow using stable expression of fluorescent proteins.","authors":"Elina Mäntylä, Paul Verkade","doi":"10.1016/bs.mcb.2024.02.032","DOIUrl":null,"url":null,"abstract":"<p><p>Correlative Light Electron Microscopy (CLEM) encompasses a wide range of experimental approaches with different degrees of complexity and technical challenges where the attributes of both light and electron microscopy are combined in a single experiment. Although the biological question always determines what technology is the most appropriate, we generally set out to apply the simplest workflow possible. For 2D cell cultures expressing fluorescently tagged molecules, we report on a simple and very powerful CLEM approach by using gridded finder imaging dishes. We first determine the gross localization of the fluorescence using light microscopy and subsequently we retrace the origin/localization of the fluorescence by projecting it onto the ultrastructural reference space obtained by transmission electron microscopy (TEM). Here we describe this workflow and highlight some basic principles of the sample preparation for such a simple CLEM experiment. We will specifically focus on the steps following the resin embedding for TEM and the introduction of the sample in the electron microscope.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.02.032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Correlative Light Electron Microscopy (CLEM) encompasses a wide range of experimental approaches with different degrees of complexity and technical challenges where the attributes of both light and electron microscopy are combined in a single experiment. Although the biological question always determines what technology is the most appropriate, we generally set out to apply the simplest workflow possible. For 2D cell cultures expressing fluorescently tagged molecules, we report on a simple and very powerful CLEM approach by using gridded finder imaging dishes. We first determine the gross localization of the fluorescence using light microscopy and subsequently we retrace the origin/localization of the fluorescence by projecting it onto the ultrastructural reference space obtained by transmission electron microscopy (TEM). Here we describe this workflow and highlight some basic principles of the sample preparation for such a simple CLEM experiment. We will specifically focus on the steps following the resin embedding for TEM and the introduction of the sample in the electron microscope.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.