{"title":"Orthology and Paralogy Relationships at Transcript Level.","authors":"Wend Yam D D Ouedraogo, Aida Ouangraoua","doi":"10.1089/cmb.2023.0400","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Eukaryotic genes undergo a mechanism called alternative processing, resulting in transcriptome diversity by allowing the production of multiple distinct transcripts from a gene. More than half of human genes are affected, and the resulting transcripts are highly conserved among orthologous genes of distinct species. In this work, we present the definition of orthology and paralogy between transcripts of homologous genes, together with an algorithm to compute clusters of conserved orthologous and paralogous transcripts. Gene-level homology relationships are utilized to define various types of homology relationships between transcripts originating from the same ancestral transcript. A Reciprocal Best Hits approach is employed to infer clusters of isoorthologous and recent paralogous transcripts. We applied this method to transcripts from simulated gene families as well as real gene families from the Ensembl-Compara database. The results are consistent with those from previous studies that compared orthologous gene transcripts. Furthermore, our findings provide evidence that searching for conserved transcripts between homologous genes, beyond the scope of orthologous genes, is likely to yield valuable information.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":"31 4","pages":"277-293"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0400","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic genes undergo a mechanism called alternative processing, resulting in transcriptome diversity by allowing the production of multiple distinct transcripts from a gene. More than half of human genes are affected, and the resulting transcripts are highly conserved among orthologous genes of distinct species. In this work, we present the definition of orthology and paralogy between transcripts of homologous genes, together with an algorithm to compute clusters of conserved orthologous and paralogous transcripts. Gene-level homology relationships are utilized to define various types of homology relationships between transcripts originating from the same ancestral transcript. A Reciprocal Best Hits approach is employed to infer clusters of isoorthologous and recent paralogous transcripts. We applied this method to transcripts from simulated gene families as well as real gene families from the Ensembl-Compara database. The results are consistent with those from previous studies that compared orthologous gene transcripts. Furthermore, our findings provide evidence that searching for conserved transcripts between homologous genes, beyond the scope of orthologous genes, is likely to yield valuable information.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases