{"title":"DEC-DRR: deep ensemble of classification model for diabetic retinopathy recognition.","authors":"L B Lisha, C Helen Sulochana","doi":"10.1007/s11517-024-03076-1","DOIUrl":null,"url":null,"abstract":"<p><p>Most diabetes patients are liable to have diabetic retinopathy (DR); however, the majority of them might not be even aware of the ailment. Therefore, early detection and treatment of DR are necessary to prevent vision loss. But, avoiding DR is not a simple process. An ophthalmologist can typically identify DR through an optical evaluation of the fundus and through the evaluation of color pictures. However, due to the increased count of DR patients, this could not be possible as it consumes more time. To rectify this problem, a novel deep ensemble-based DR classification technique is developed in this work. Initially, a Wiener filter (WF) is applied for preprocessing the image. Then, the enhanced U-Net-based segmentation process is done. Subsequent to the segmentation process, features are extracted that include statistical features, inferior superior nasal temporal (ISNT), cup to disc ratio (CDR), and improved LGBP as well. Further, deep ensemble classifiers (DEC) like CNN, Bi-GRU, and DMN are used to recognize the disease. The outcomes from DMN, CNN, and Bi-GRU are then subjected to improved SLF. Additionally, the weights of DMN, CNN, and Bi-GRU are adjusted via pelican updated Tasmanian devil optimization (PU-TDO). Finally, outputs on DR (microaneurysms, hemorrhages, hard exudates, and soft exudates) are obtained. The performance of DEC + PU-TDO for diabetic retinopathy is computed over extant models with regard to different measures for four datasets. The results on accuracy using the DEC + PU-TDO scheme for the IDRID dataset is maximum around 0.975 at 90th LP while other models have less accuracy. The FPR of DEC + PU-TDO is less around 0.039 at the 90th LP for the SUSTech-SYSU dataset, while other extant models have maximum FPR.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03076-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Most diabetes patients are liable to have diabetic retinopathy (DR); however, the majority of them might not be even aware of the ailment. Therefore, early detection and treatment of DR are necessary to prevent vision loss. But, avoiding DR is not a simple process. An ophthalmologist can typically identify DR through an optical evaluation of the fundus and through the evaluation of color pictures. However, due to the increased count of DR patients, this could not be possible as it consumes more time. To rectify this problem, a novel deep ensemble-based DR classification technique is developed in this work. Initially, a Wiener filter (WF) is applied for preprocessing the image. Then, the enhanced U-Net-based segmentation process is done. Subsequent to the segmentation process, features are extracted that include statistical features, inferior superior nasal temporal (ISNT), cup to disc ratio (CDR), and improved LGBP as well. Further, deep ensemble classifiers (DEC) like CNN, Bi-GRU, and DMN are used to recognize the disease. The outcomes from DMN, CNN, and Bi-GRU are then subjected to improved SLF. Additionally, the weights of DMN, CNN, and Bi-GRU are adjusted via pelican updated Tasmanian devil optimization (PU-TDO). Finally, outputs on DR (microaneurysms, hemorrhages, hard exudates, and soft exudates) are obtained. The performance of DEC + PU-TDO for diabetic retinopathy is computed over extant models with regard to different measures for four datasets. The results on accuracy using the DEC + PU-TDO scheme for the IDRID dataset is maximum around 0.975 at 90th LP while other models have less accuracy. The FPR of DEC + PU-TDO is less around 0.039 at the 90th LP for the SUSTech-SYSU dataset, while other extant models have maximum FPR.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).